- -

Citrus tristeza virus: Host RNA Silencing and Virus Counteraction

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Citrus tristeza virus: Host RNA Silencing and Virus Counteraction

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ruiz-Ruiz, Susana es_ES
dc.contributor.author Navarro, Beatriz es_ES
dc.contributor.author PEÑA GARCIA, LEANDRO es_ES
dc.contributor.author Navarro, Luis es_ES
dc.contributor.author Moreno, Pedro es_ES
dc.contributor.author Di Serio, Francesco es_ES
dc.contributor.author FLORES PEDAUYE, RICARDO es_ES
dc.date.accessioned 2021-01-20T04:32:25Z
dc.date.available 2021-01-20T04:32:25Z
dc.date.issued 2019 es_ES
dc.identifier.issn 1064-3745 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159537
dc.description.abstract [EN] To dissect the host RNA silencing response incited by citrus tristeza virus (CTV, genus Closterovirus), a (+) ssRNA of similar to 19300 nt, and the counter reaction deployed by the virus via its three RNA silencing suppressors (RSS), the small RNAs (sRNAs) of three virus-host combinations were deep sequenced. The subsequent analysis indicated that CTV sRNAs (1) constitute more than half of the total sRNAs in the susceptible Mexican lime and sweet orange, while only 3.5% in the restrictive sour orange; (2) are mostly of 21-22 nt, with those of (+) sense predominating slightly; and (3) derive from all the CTV genome, as evidenced by its entire recomposition from viral sRNA contigs but adopt an asymmetric pattern with a hotspot mapping at the 3'-terminal similar to 2500 nt. The citrus homologues of Arabidopsis Dicer-like (DCL) 4 and 2 most likely generate the 21 and 22 nt CTV sRNAs, respectively, by dicing the gRNA and the 3' co-terminal sgRNAs and, particularly, their double-stranded forms accumulating in infected cells. The plant sRNA profile, very similar and dominated by the 24 nt sRNAs in the three mock-inoculated controls, displayed a major reduction of the 24 nt sRNAs in Mexican lime and sweet orange, but not in sour orange. CTV infection also influences the levels of certain microRNAs. The high accumulation of CTV sRNAs in two of the citrus hosts examined suggests that it is not their synthesis, but their function, the target of the RSS encoded by CTV: p25 (intercellular), p23 (intracellular) and p20 (both). The two latter might block the loading of CTV sRNAs into the RNA silencing complex or interfere with it through alternative mechanisms. Of the three CTV RSS, p23 is the one that has been more thoroughly studied. It is a multifunctional RNA-binding protein with a putative Zn finger domain and basic motifs that (1) has no homologues in other closteroviruses, (2) accumulates in the nucleolus and plasmodesmata, (3) regulates the asymmetric balance of CTV (+) and (-) RNA strands, and (4) induces CTV syndromes and stimulates systemic infection in certain citrus species when expressed as a transgene ectopically or in phloem-associated cells. es_ES
dc.description.sponsorship This research was supported by a grant (Prometeo/2008/121) from the Generalitat Valenciana, Spain, and by a grant (AGL2009-08052) from the Ministerio de Ciencia e Innovacio¿nFondo Europeo de Desarrollo Regional. S. Ruiz-Ruiz was additionally supported by a postdoctoral contract from the Generalitat Valenciana (APOSTD/2012/020, Program VALi+d). es_ES
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof Methods in Molecular Biology es_ES
dc.relation.ispartof Citrus Tristeza Virus: Methods and Protocols es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Closteroviruses es_ES
dc.subject MicroRNAs es_ES
dc.subject RNA silencing es_ES
dc.subject Small interfering RNAs es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Citrus tristeza virus: Host RNA Silencing and Virus Counteraction es_ES
dc.type Artículo es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.1007/978-1-4939-9558-5_14 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO08%2F2008%2F121/ES/Biotecnología de cítricos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2009-08052/ES/Mejora Genetica De La Calidad Y De La Respuesta A Estreses Bioticos De Los Citricos Mediante Ingenieria Genetica/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2012%2F020/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Ruiz-Ruiz, S.; Navarro, B.; Peña Garcia, L.; Navarro, L.; Moreno, P.; Di Serio, F.; Flores Pedauye, R. (2019). Citrus tristeza virus: Host RNA Silencing and Virus Counteraction. Methods in Molecular Biology. 2015:195-207. https://doi.org/10.1007/978-1-4939-9558-5_14 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/978-1-4939-9558-5_14 es_ES
dc.description.upvformatpinicio 195 es_ES
dc.description.upvformatpfin 207 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2015 es_ES
dc.relation.pasarela S\406700 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Bar-Joseph M, Garnsey SM, Gonsalves D (1979) The closteroviruses: a distinct group of elongated plant viruses. Adv Virus Res 25:93–168 es_ES
dc.description.references Moreno P, Ambrós S, Albiach-Martí MR et al (2008) Citrus tristeza virus: a pathogen that changed the course of the citrus industry. Mol Plant Pathol 9:251–268 es_ES
dc.description.references Dawson WO, Garnsey SM, Tatineni S et al (2013) Citrus tristeza virus-host interactions. Front Microbiol 4:88 es_ES
dc.description.references Pappu HR, Karasev AV, Anderson EJ et al (1994) Nucleotide sequence and organization of eight 3′ open reading frames of the citrus tristeza closterovirus genome. Virology 199:35–46 es_ES
dc.description.references Karasev AV, Boyko VP, Gowda S et al (1995) Complete sequence of the Citrus tristeza virus RNA genome. Virology 208:511–520 es_ES
dc.description.references Mawassi M, Mietkiewska E, Gofman R et al (1996) Unusual sequence relationships between two isolates of Citrus tristeza virus. J Gen Virol 77:2359–2364 es_ES
dc.description.references Vives MC, Rubio L, López C et al (1999) The complete genome sequence of the major component of a mild Citrus tristeza virus isolate. J Gen Virol 80:811–816 es_ES
dc.description.references Yang ZN, Mathews DH, Dodds JA et al (1999) Molecular characterization of an isolate of Citrus tristeza virus that causes severe symptoms in sweet orange. Virus Genes 19:131–142 es_ES
dc.description.references Hilf M, Karasev AV, Pappu HR et al (1995) Characterization of Citrus tristeza virus subgenomic RNAs in infected tissue. Virology 208:576–582 es_ES
dc.description.references Satyanarayana T, Gowda S, Mawassi M et al (2000) Closterovirus encoded HSP70 homolog and p61 in addition to both coat proteins function in efficient virion assembly. Virology 278:253–265 es_ES
dc.description.references Sekiya ME, Lawrence SD, Mccaffery M et al (1991) Molecular cloning and nucleotide sequencing of the coat protein gene of Citrus tristeza virus. J Gen Virol 72:1013–1020 es_ES
dc.description.references Febres VJ, Pappu HR, Anderson EJ et al (1994) The diverged copy of the Citrus tristeza virus coat protein is expressed in vivo. Virology 201:178–181 es_ES
dc.description.references Febres VJ, Ashoulin L, Mawassi M et al (1996) The p27 protein is present at one end of Citrus tristeza virus particles. Phytopathology 86:1331–1335 es_ES
dc.description.references Satyanarayana T, Gowda S, Ayllon M et al (2004) Closterovirus bipolar virion: Evidence for initiation of assembly by minor coat protein and its restriction to the genomic RNA 5′ region. Proc Natl Acad Sci U S A 101:799–804 es_ES
dc.description.references Kang SH, Atallah OO, Sun YD et al (2018) Functional diversification upon leader protease domain duplication in the Citrus tristeza virus genome: Role of RNA sequences and the encoded proteins. Virology 514:192–202 es_ES
dc.description.references Gowda S, Satyanarayana T, Davis CL et al (2000) The p20 gene product of Citrus tristeza virus accumulates in the amorphous inclusion bodies. Virology 274:246–254 es_ES
dc.description.references López C, Navas-Castillo J, Gowda S et al (2000) The 23 kDa protein coded by the 3′-terminal gene of Citrus tristeza virus is an RNA-binding protein. Virology 269:462–470 es_ES
dc.description.references Satyanarayana T, Gowda S, Ayllon MA et al (2002a) The p23 protein of Citrus tristeza virus controls asymmetrical RNA accumulation. J Virol 76:473–483 es_ES
dc.description.references Ghorbel R, López C, Fagoaga C et al (2001) Transgenic citrus plants expressing the Citrus tristeza virus p23 protein exhibit viral-like symptoms. Mol Plant Pathol 2:27–36 es_ES
dc.description.references Fagoaga C, Lopez C, Moreno P et al (2005) Viral-like symptoms induced by the ectopic expression of the p23 gene of Citrus tristeza virus are citrus specific and do not correlate with the pathogenicity of the virus strain. Mol Plant-Microbe Interact 18:435–445 es_ES
dc.description.references Fagoaga C, Lopez C, de Mendoza AH et al (2006) Post-transcriptional gene silencing of the p23 silencing suppressor of Citrus tristeza virus confers resistance to the virus in transgenic Mexican lime. Plant Mol Biol 60:153–165 es_ES
dc.description.references Soler N, Fagoaga C, Lopez C et al (2015) Symptoms induced by transgenic expression of p23 from Citrus tristeza virus in phloem-associated cells of Mexican lime mimic virus infection without the aberrations accompanying constitutive expression. Mol Plant Pathol 16:388–399 es_ES
dc.description.references Soler N, Plomer M, Fagoaga C et al (2012) Transformation of Mexican lime with an intron-hairpin construct expressing untranslatable versions of the genes coding for the three silencing suppressors of Citrus tristeza virus confers complete resistance to the virus. Plant Biotechnol J 10:597–608 es_ES
dc.description.references Tatineni S, Robertson CJ, Garnsey SM et al (2008) Three genes of Citrus tristeza virus are dispensable for infection and movement throughout some varieties of citrus trees. Virology 376:297–307 es_ES
dc.description.references Tatineni S, Robertson CJ, Garnsey SM et al (2011) A plant virus evolved by acquiring multiple nonconserved genes to extend its host range. Proc Natl Acad Sci U S A 108:17366–17371 es_ES
dc.description.references Tatineni S, Dawson WO (2012) Enhancement or attenuation of disease by deletion of genes from Citrus tristeza virus. J Virol 86:7850–7857 es_ES
dc.description.references Folimonova SY (2012) Superinfection exclusion is an active virus-controlled function that requires a specific viral protein. J Virol 86:5554–5561 es_ES
dc.description.references Atallah OO, Kang SH, El-Mohtar C et al (2016) A 5′-proximal region of the Citrus tristeza virus genome encoding two leader proteases is involved in virus superinfection exclusion. Virology 489:108–115 es_ES
dc.description.references López C, Ayllón MA, Navas-Castillo J et al (1998) Sequence polymorphism in the 5′ and 3′ terminal regions of tristeza virus RNA. Phytopathology 88:685–691 es_ES
dc.description.references Satyanarayana T, Gowda S, Ayllon MA et al (2002b) Mutational analysis of the replication signals in the 3′-nontranslated region of Citrus tristeza virus. Virology 300:140–152 es_ES
dc.description.references Ayllón MA, López C, Navas-Castillo J et al (2001) Polymorphism of the 5′-terminal region of Citrus tristeza virus (CTV) RNA: Incidence of three sequence types in isolates of different origin and pathogenicity. Arch Virol 146:27–40 es_ES
dc.description.references Gowda S, Satyanarayana T, Ayllón MA et al (2003) The conserved structures of the 5′ nontranslated region of Citrus tristeza virus are involved in replication and virion assembly. Virology 317:50–64 es_ES
dc.description.references Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655 es_ES
dc.description.references Molnar A, Csorba T, Lakatos L et al (2005) Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs. J Virol 79:7812–7818 es_ES
dc.description.references Qi Y, Denli AM, Hannon GJ (2005) Biochemical specialization within Arabidopsis RNA silencing pathways. Mol Cell 19:421–428 es_ES
dc.description.references Dalmay T, Hamilton A, Rudd S et al (2000) An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101:543–553 es_ES
dc.description.references Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952 es_ES
dc.description.references Mallory A, Vaucheret H (2010) Form, function, and regulation of ARGONAUTE proteins. Plant Cell 22:3879–3889 es_ES
dc.description.references Ma Z, Zhang X (2018) Actions of plant Argonautes: predictable or unpredictable? Curr Opin Plant Biol 45:59–67 es_ES
dc.description.references Omarov RT, Cioperlik JJ, Sholthof HB (2007) RNAi-associated ssRNA-specific ribonucleases in tombusvirus P19 mutant-infected plants and evidence for a discrete siRNA-containing effector complex. Proc Natl Acad Sci U S A 104:1714–1719 es_ES
dc.description.references Pantaleo V, Szittya G, Burgyán J (2007) Molecular bases of viral RNA targeting by viral small interfering RNA-programmed RISC. J Virol 81:3797–3806 es_ES
dc.description.references Ding SW (2010) RNA-based antiviral immunity. Nat Rev Immunol 10:632–644 es_ES
dc.description.references Csorba T, Kontra L, Burgyán J (2015) Viral silencing suppressors: tools forged to fine-tune host-pathogen coexistence. Virology 479-480:85–103 es_ES
dc.description.references Díaz-Pendón JA, Ding SW (2008) Direct and indirect roles of viral suppressors of RNA silencing in pathogenesis. Annu Rev Phytopathol 46:303–326 es_ES
dc.description.references Kontra L, Csorba T, Tavazza M et al (2016) Distinct effects of p19 RNA silencing suppressor on small RNA mediated pathways in plants. PloS Path 12:e1005935 es_ES
dc.description.references Ruiz-Ruiz S, Navarro B, Gisel A et al (2011) Citrus tristeza virus infection induces the accumulation of viral small RNAs (21-24-nt) mapping preferentially at the 3′-terminal region of the genomic RNA and affects the host small RNA profile. Plant Mol Biol 75:607–619 es_ES
dc.description.references Dolgosheina EV, Morin RD, Aksay G et al (2008) Conifers have a unique small RNA silencing signature. RNA 14:1508–1515 es_ES
dc.description.references Morin RD, Aksay G, Dolgosheina E et al (2008) Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa. Genome Res 18:571–584 es_ES
dc.description.references Mi S, Cai T, Hu Y et al (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133:116–127 es_ES
dc.description.references Montgomery TA, Howell MD, Cuperus JT et al (2008) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133:128–141 es_ES
dc.description.references Donaire L, Wang Y, González-Ibeas D et al (2009) Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology 392:203–214 es_ES
dc.description.references Kreuze JF, Pérez A, Untiveros M et al (2009) Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology 388:1–7 es_ES
dc.description.references Moreno P, Guerri J, Muñoz N (1990) Identification of Spanish strains of Citrus tristeza virus (CTV) by analysis of double-stranded RNAs. Phytopathology 80:477–482 es_ES
dc.description.references Aramburu J, Navas-Castillo J, Moreno P et al (1991) Detection of double-stranded RNA by ELISA and dot immunobinding assay using an antiserum to synthetic polynucleotides. J Virol Methods 33:1–11 es_ES
dc.description.references Bar-Joseph M, Dawson WO (2008) Citrus tristeza virus. In: Mahy BWJ, Van Regenmortel MHV (eds) Encyclopedia of virology, 3rd edn. Elsevier, Oxford, pp 520–525 es_ES
dc.description.references Folimonova SY, Harper SJ, Leonard MT et al (2014) Superinfection exclusion by Citrus tristeza virus does not correlate with the production of viral small RNAs. Virology 468-470:462–471 es_ES
dc.description.references Licciardello G, Scuderi G, Ferraro R et al (2015) Deep sequencing and analysis of small RNAs in sweet orange grafted on sour orange infected with two Citrus tristeza virus isolates prevalent in Sicily. Arch Virol 160:2583–2589 es_ES
dc.description.references Matsumura EE, Coletta-Filho HD, Nouri S et al (2017) Deep sequencing analysis of RNAs from citrus plants grown in a citrus sudden death-affected area reveals diverse known and putative novel viruses. Viruses 9:92 es_ES
dc.description.references Yokomi RK, Selvaraj V, Maheshwari Y et al (2017) Identification and characterization of Citrus tristeza virus isolates breaking resistance in trifoliate orange in California. Phytopathology 107:901–908 es_ES
dc.description.references Visser M, Cook G, Burger JT et al (2017) In silico analysis of the grapefruit sRNAome, transcriptome and gene regulation in response to CTV-CDVd co-infection. Virol J 14:200 es_ES
dc.description.references Song C, Fang J, Li X et al (2007) Identification and characterization of 27 conserved microRNAs in citrus. Planta 230:671–685 es_ES
dc.description.references Morel JB, Godon C, Mourrain P et al (2002) Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in posttranscriptional gene silencing and virus resistance. Plant Cell 14:629–639 es_ES
dc.description.references Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci U S A 102:11928–11933 es_ES
dc.description.references Qu F, Ye X, Morris TJ (2008) Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proc Natl Acad Sci U S A 105:14732–14737 es_ES
dc.description.references Vaucheret H, Mallory AC, Bartel DP (2006) AGO1 homeostasis entails coexpression of miR168 and AGO1 and preferential stabilization of miR168 by AGO1. Mol Cell 22:129–136 es_ES
dc.description.references Varallyay E, Valoczi A, Agyi A et al (2010) Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation. EMBO J 29:3507–3519 es_ES
dc.description.references Yang ZN, Ye XR, Molina J et al (2003) Sequence analysis of a 282-kilobase region surrounding the Citrus tristeza virus resistance gene (Ctv) locus in Poncirus trifoliata L. Raf. Plant Physiol 131:482–492 es_ES
dc.description.references Lu R, Folimonov A, Shintaku M et al (2004) Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proc Natl Acad Sci U S A 101:15742–15747 es_ES
dc.description.references Flores R, Ruiz-Ruiz S, Soler N et al (2013) Citrus tristeza virus p23: a unique protein mediating key virus-host interactions. Front Microbiol 4:98 es_ES
dc.description.references Ruiz-Ruiz S, Soler N, Sánchez-Navarro J et al (2013) Citrus tristeza virus p23: determinants for nucleolar localization and their influence on suppression of RNA silencing and pathogenesis. Mol Plant-Microbe Interact 26:306–318 es_ES
dc.description.references López C, Cervera M, Fagoaga C et al (2010) Accumulation of transgene-derived siRNAs is not sufficient for RNAi-mediated protection against Citrus tristeza virus (CTV) in transgenic Mexican lime. Mol Plant Pathol 11:33–41 es_ES
dc.description.references Chiba M, Reed JC, Prokhnevsky AI et al (2006) Diverse suppressors of RNA silencing enhance agroinfection by a viral replicon. Virology 346:7–14 es_ES
dc.description.references Albiach-Marti MR, Robertson C, Gowda S et al (2010) The pathogenicity determinant of Citrus tristeza virus causing the seedling yellows syndrome maps at the 3′-terminal region of the viral genome. Mol Plant Pathol 11:55–67 es_ES
dc.description.references Fagoaga C, Pensabene-Bellavia G, Moreno P et al (2011) Ectopic expression of the p23 silencing suppressor of Citrus tristeza virus differentially modifies viral accumulation and tropism in two transgenic woody hosts. Mol Plant Pathol 12:898–910 es_ES
dc.description.references Sambade A, López C, Rubio L et al (2003) Polymorphism of a specific region in gene p23 of Citrus tristeza virus allows discrimination between mild and severe isolates. Arch Virol 148:2325–2340 es_ES
dc.description.references Ruiz-Ruiz S, Spàno R, Navarro L et al (2018) Citrus tristeza virus co-opts glyceraldehyde 3-phosphate dehydrogenase for its infectious cycle by interacting with the viral-encoded protein p23. Plant Mol Biol 98:363–373 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem