- -

The Copernicus EMS Validation service as a vector for improving the emergency mapping based on Sentinel data

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

The Copernicus EMS Validation service as a vector for improving the emergency mapping based on Sentinel data

Show full item record

Donezar-Hoyos, U.; Albizua-Huarte, L.; Amezketa-Lizarraga, E.; Barinagarrementeria-Arrese, I.; Ciriza, R.; De Blas-Corral, T.; Larrañaga-Urien, A.... (2020). The Copernicus EMS Validation service as a vector for improving the emergency mapping based on Sentinel data. Revista de Teledetección. 0(56):23-34. https://doi.org/10.4995/raet.2020.13770

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159561

Files in this item

Item Metadata

Title: The Copernicus EMS Validation service as a vector for improving the emergency mapping based on Sentinel data
Secondary Title: El Servicio de Validación de Copernicus EMS como vector de mejora de la cartografía de emergencias basada en Sentinel
Author: Donezar-Hoyos, U. Albizua-Huarte, L. Amezketa-Lizarraga, E. Barinagarrementeria-Arrese, I. Ciriza, R. de Blas-Corral, T. Larrañaga-Urien, A. Ros-Elso, F. Tamés-Noriega, A. Viñuales-Lasheras, M. Broglia, M. Steel, A. Ameztoy, I. Rufolo, P.
Issued date:
Abstract:
[EN] The Copernicus Emergency Management Service (CEMS) is coordinated by the European Commission and “provides all actors involved in the management of natural disasters, man-made emergency situations, and humanitarian ...[+]


[ES] El Servicio de Gestión de Emergencias de Copernicus (CEMS), está coordinado por la Comisión Europea y “provee de información geoespacial precisa y oportuna derivada de la teledetección satelital y completada por fuentes ...[+]
Subjects: Copernicus , Emergencies , CEMS , Validation , Sentinel-1 , Sentinel-2 , Mapping , Flood , Fire , Emergencias , Validación , Cartografía , Inundación , Incendio
Copyrigths: Reconocimiento - Compartir igual (by-sa)
Source:
Revista de Teledetección. (issn: 1133-0953 ) (eissn: 1988-8740 )
DOI: 10.4995/raet.2020.13770
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/raet.2020.13770
Thanks:
The authors gratefully acknowledge the contribution of Massimiliano Rossi and Antigoni Maistrali for the preparation of the materials analysed in this work.
Type: Artículo

References

Broglia, M., Corbane, C., Carrion, D., Lemoine, G., and Pesaresi, M. 2010. Validation Protocol for Emergency Response Geo-information Products. JRC59838. JRC technical reports. Luxembourg. http://publications.jrc.ec.europa.eu/repository/handle/JRC59838.

Closson, D., Milisavljevic, N. 2017. InSAR Coherence and Intensity Changes Detection. In Mine Action - The Research Experience of the Royal Military Academy of Belgium. https://doi.org/10.5772/65779

Cocke, A.E., Fule, P.Z., Crouse, J.E. 2005. Comparison of burn severity assessments using Differenced Normalized Burn Ratio and ground data. International Journal of Wildland Fire, 14(2), pp. 189-198. https://doi.org/10.1071/WF04010 [+]
Broglia, M., Corbane, C., Carrion, D., Lemoine, G., and Pesaresi, M. 2010. Validation Protocol for Emergency Response Geo-information Products. JRC59838. JRC technical reports. Luxembourg. http://publications.jrc.ec.europa.eu/repository/handle/JRC59838.

Closson, D., Milisavljevic, N. 2017. InSAR Coherence and Intensity Changes Detection. In Mine Action - The Research Experience of the Royal Military Academy of Belgium. https://doi.org/10.5772/65779

Cocke, A.E., Fule, P.Z., Crouse, J.E. 2005. Comparison of burn severity assessments using Differenced Normalized Burn Ratio and ground data. International Journal of Wildland Fire, 14(2), pp. 189-198. https://doi.org/10.1071/WF04010

CEMS, Copernicus Emergency Management Service, 2017. Early Warning and monitoring. Floods and forest fires. Available at: https://emergency.copernicus.eu/mapping/ems/early-warningsystems-efas-and-effis

CEMS, Copernicus Emergency Management Service, 2018. Copernicus Emergency Management Service - Mapping, Manual of Operational Procedures. Available at: https://emergency.copernicus.eu/mapping/sites/default/files/files/EMS_Mapping_Manual_of_Procedures_v1_3_final.pdf

CEMS, Copernicus Emergency Management Service, 2020. Service overview. https://emergency.copernicus.eu/mapping/sites/default/files/files/CopernicusEMS-Service_Overview_Brochure.pdf

Copernicus Space Component Data Access. Available: https://spacedata.copernicus.eu/

Copernicus Space Component Data Access (ESA). 2020. Contributing Mission. Available at: https:// spacedata.copernicus.eu/web/cscda/data-offer/mission-groups

Donezar, U., Larrañaga, A., Tamés, A., Sánchez, C., Albizua, L., Ciriza, R., Del Barrio, F. 2017. Applicability of Sentinel-1 and Sentinel-2 Images for the Detection and Delineation of Crisis Information in the Scope of Copernicus EMS Services. Revista de Teledetección, 50, 49-57. https://doi.org/10.4995/raet.2017.8896

Donezar, U., De Blas, T., Larrañaga, A., Ros, F., Albizua, L., Steel, A., Broglia, M. 2019. Applicability of the MultiTemporal Coherence Approach to Sentinel-1 for the Detection and Delineation of Burnt Areas in the Context of the Copernicus Emergency Management Service. Remote Sens., 11(22), 2607. https://doi.org/10.3390/rs11222607

ESA, a. European Space Agency. N.d. a. Sentinel Online. Technical Guides. Available at: https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-1-sar/products-algorithms/level-1-algorithms/products

ESA, b. European Space Agency. N.d. b. Sentinel Online. Technical Guides. Available at: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/resolutions/level-1-single-look-complex

ESA, c. European Space Agency. N.d. c. Sentinel Online. Technical Guides. Available at: https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types

ESA, d. European Space Agency (ESA). N.d. d Step (Science toolbox exploitation platform). Sen2Cor. Available at: https://step.esa.int/main/third-partyplugins-2/sen2cor

ESA, e. European Space Agency (ESA). N.d. e. ERS Radar Courses. Available at: https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/ers/instruments/sar/applications/radar-courses/content-2/-/asset_publisher/qIBc6NYRXfnG/content/radar-course-2-parameters-affecting-radarbackscatter

Ferretti, A., Monti-Guarnieri, A., Prati, C., Rocca, F. 2017a. Part A - Interferometric SAR image processing and interpretation. In InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation; Fletcher, K., Ed.; ESA Publications: Noordwijk, The Netherlands.

Ferretti, A., Monti Guarnieri, A., Prati, C., Rocca, F. 2017b. Part B - InSAR processing: A practical approach. In InSAR Principles: Guidelines for SAR interferometry processing and interpretation; Fletcher, K., Ed.; ESA Publications: Noordwijk, The Netherlands.

Fornacca, D., Ren, G.P., Xiao, W. 2018. Evaluating the best spectral indices for the detection of burn scars at several post-fire dates in a mountainous region of Northwest Yunnan, China. Remote Sensing, 10(8), 1196. https://doi.org/10.3390/rs10081196

Henry, J.B., Chastanet, P., Fellah, K., Desnos, Y.L. 2006. Envisat Multi-Polarized ASAR Data for Flood Mapping. International Journal of Remote Sensing, 27(10), 1921-1929. https://doi.org/10.1080/01431160500486724

Jo, M., Batuhan, O., Zhang, B., Wdowinski, S. 2018. Flood extent mapping using dual-polarimetric Sentinel-1 synthetic aperture radar imagery. In: ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLII-3, pp. 711-713. https://doi.org/10.5194/isprsarchives-XLII-3-711-2018

Lencinas, J.D., Siebert, A. 2009. Relevamiento de bosques con información satelital: Resolución espacial y escala. Quebracho, 17(1,2), 101-105. Lu, Z., Zhang, L. 2014. Frontiers of Radar Remote Sensing. Photogrammetric Engineering & Remote Sensing, 80, 5-13.

Pekel J.F., Cottam A., Gorelick N., Belward, A.S. 2016. High-resolution mapping of global surface water and its long-term changes. Nature, 540, 418-422. https://doi.org/10.1038/nature20584

Priego, A., Bocco, G., Mendoza, M., Garrido, A. 2010. Propuesta para la generación semiautomatizada de unidades de paisaje: Serie Planeación territorial. Procedimiento para el levantamiento y cartografía de las unidades superiores de los paisajes a escalas 1:50,000 y 1:250,000, pp. 33-52., UNAM, Mexico.

Shen, X., Wang, D., Mao, K., Anagnostou, E., Hong, Y. 2019. Inundation Extent Mapping by Synthetic Aperture Radar: A Review. Remote Sensing, 11, 879. https://doi.org/10.3390/rs11070879

Tanase, M.A., De la Riva, J., Santoro, M., PerezCabello, F., and Kasischke, E.S. 2011. Sensitivity of SAR data to post-fire forest regrowth in Mediterranean and boreal forests. Remote Sensing of Environment, 115, 2075-2085. https://doi.org/10.1016/j.rse.2011.04.009

Textron systems. Available at https://www.textronsystems.com/products/feature-analyst

U.S. Geological Survey (USGS). N.d. EROS Data Center. SRTM 1 Arc-Second global. Available at: https://www.usgs.gov/centers/eros/science/ usgs-eros-archive-digital-elevation-shuttle-radartopography-mission-srtm-1-arc?qt-science_center_ objects=0#qt-science_center_objects

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record