- -

Deep learning para la clasificación de usos de suelo agrícola con Sentinel-2

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Deep learning para la clasificación de usos de suelo agrícola con Sentinel-2

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Campos-Taberner, M. es_ES
dc.contributor.author García-Haro, F.J. es_ES
dc.contributor.author Martínez, B. es_ES
dc.contributor.author Gilabert, M.A. es_ES
dc.date.accessioned 2021-01-20T11:21:32Z
dc.date.available 2021-01-20T11:21:32Z
dc.date.issued 2020-11-27
dc.identifier.issn 1133-0953
dc.identifier.uri http://hdl.handle.net/10251/159562
dc.description.abstract [ES] En el campo de la teledetección se ha producido recientemente un incremento del uso de técnicas de aprendizaje profundo (deep learning). Estos algoritmos se utilizan con éxito principalmente en la estimación de parámetros y en la clasificación de imágenes. Sin embargo, se han realizado pocos esfuerzos encaminados a su comprensión, lo que lleva a ejecutarlos como si fueran “cajas negras”. Este trabajo pretende evaluar el rendimiento y acercarnos al entendimiento de un algoritmo de aprendizaje profundo, basado en una red recurrente bidireccional de memoria corta a largo plazo (2-BiLSTM), a través de un ejemplo de clasificación de usos de suelo agrícola de la Comunidad Valenciana dentro del marco de trabajo de la política agraria común (PAC) a partir de series temporales de imágenes Sentinel-2. En concreto, se ha comparado con otros algoritmos como los árboles de decisión (DT), los k-vecinos más cercanos (k-NN), redes neuronales (NN), máquinas de soporte vectorial (SVM) y bosques aleatorios (RF) para evaluar su precisión. Se comprueba que su precisión (98,6% de acierto global) es superior a la del resto en todos los casos. Por otra parte, se ha indagado cómo actúa el clasificador en función del tiempo y de los predictores utilizados. Este análisis pone de manifiesto que, sobre el área de estudio, la información espectral y espacial derivada de las bandas del rojo e infrarrojo cercano, y las imágenes correspondientes a las fechas del período de verano, son la fuente de información más relevante utilizada por la red en la clasificación. Estos resultados abren la puerta a nuevos estudios en el ámbito de la explicabilidad de los resultados proporcionados por los algoritmos de aprendizaje profundo en aplicaciones de teledetección. es_ES
dc.description.abstract [EN] The use of deep learning techniques for remote sensing applications has recently increased. These algorithms have proven to be successful in estimation of parameters and classification of images. However, little effort has been made to make them understandable, leading to their implementation as “black boxes”. This work aims to evaluate the performance and clarify the operation of a deep learning algorithm, based on a bi-directional recurrent network of long short-term memory (2-BiLSTM). The land use classification in the Valencian Community based on Sentinel-2 image time series in the framework of the common agricultural policy (CAP) is used as an example. It is verified that the accuracy of the deep learning techniques is superior (98.6 % overall success) to that other algorithms such as decision trees (DT), k-nearest neighbors (k-NN), neural networks (NN), support vector machines (SVM) and random forests (RF). The performance of the classifier has been studied as a function of time and of the predictors used. It is concluded that, in the study area, the most relevant information used by the network in the classification are the images corresponding to summer and the spectral and spatial information derived from the red and near infrared bands. These results open the door to new studies in the field of the explainable deep learning in remote sensing applications. es_ES
dc.description.sponsorship Este trabajo ha sido subvencionado gracias al Convenio 2019 y 2020 de colaboración entre la Generalitat Valenciana, a través de la Conselleria d’Agricultura, Medi Ambient, Canvi Climàtic i Desenvolupament Rural, y la Universitat de València – Estudi General. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista de Teledetección es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa)
dc.subject Deep learning es_ES
dc.subject BiLSTM es_ES
dc.subject Classification es_ES
dc.subject Time series es_ES
dc.subject Sentinel-2 es_ES
dc.subject Clasificación es_ES
dc.subject Series temporales es_ES
dc.title Deep learning para la clasificación de usos de suelo agrícola con Sentinel-2 es_ES
dc.title.alternative Deep learning for agricultural land use classification from Sentinel-2 es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/raet.2020.13337
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Campos-Taberner, M.; García-Haro, F.; Martínez, B.; Gilabert, M. (2020). Deep learning para la clasificación de usos de suelo agrícola con Sentinel-2. Revista de Teledetección. 0(56):35-48. https://doi.org/10.4995/raet.2020.13337 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/raet.2020.13337 es_ES
dc.description.upvformatpinicio 35 es_ES
dc.description.upvformatpfin 48 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 0 es_ES
dc.description.issue 56 es_ES
dc.identifier.eissn 1988-8740
dc.relation.pasarela OJS\13337 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat de València
dc.description.references Baraldi, A., Parmiggiani, F. 1995. An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters. IEEE Transactions on Geoscience and Remote Sensing, 33(2), 293-304. https://doi.org/10.1109/36.377929 es_ES
dc.description.references Bengio, Y., Simard, P., Frasconi, P. 1994. Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157-166. https://doi.org/10.1109/72.279181 es_ES
dc.description.references Breiman, L., Friedman, J., Olshen, R.A., Stone, C.J. 1984. Classification and regression trees. Taylor & Francis: London, UK. es_ES
dc.description.references Breiman, L. 2001. Random forests. Machine learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324 es_ES
dc.description.references Campos-Taberner, M., Romero-Soriano, A., Gatta, C., Camps-Valls, G., Lagrange, A., Le Saux, B., Beaupère, A., Boulch, A., Chan-Hon-Tong, A., Herbin, S., Randrianarivo, H., Ferecatu, M., Shimoni, M., Moser, G., Tuia, D. 2016. Processing of extremely high-resolution Lidar and RGB data: outcome of the 2015 IEEE GRSS data fusion contest-part a: 2-D contest. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(12), 5547-5559. https://doi.org/10.1109/JSTARS.2016.2569162 es_ES
dc.description.references Campos-Taberner, M., García-Haro, F.J., Martínez, B., Sánchez-Ruíz, S., Gilabert, M.A. 2019a. A Copernicus Sentinel-1 and Sentinel-2 Classification Framework for the 2020+ European Common Agricultural Policy: A Case Study in València (Spain). Agronomy, 9(9), 556. https://doi.org/10.3390/agronomy9090556 es_ES
dc.description.references Campos-Taberner, M., García-Haro, F.J., Martínez, B., Sánchez-Ruiz, S., Gilabert, M.A. 2019b. Evaluación del potencial de Sentinel-2 para actualizar el SIGPAC de la Comunitat Valenciana. En: XVIII Congreso de la Asociación Española de Teledetección. Valladolid, España, 24-27, septiembre. pp 11-14. es_ES
dc.description.references Camps-Valls, G., Tuia, D., Bruzzone, L., Benediktsson, J.A. 2013. Advances in hyperspectral image classification: Earth monitoring with statistical learning methods. IEEE Signal Processing Magazine, 31(1), 45-54. https://doi.org/10.1109/MSP.2013.2279179 es_ES
dc.description.references Chuvieco, E. 2008. Teledetección Ambiental. La observación de la Tierra desde el espacio. Madrid: Ariel. es_ES
dc.description.references Cover, T., Hart, P. 1967. Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21-27. https://doi.org/10.1109/TIT.1967.1053964 es_ES
dc.description.references Estrada, J., Sánchez, H., Hernanz, L., Checa, M.J., Roman, D. 2017. Enabling the Use of Sentinel-2 and LiDAR Data for Common Agriculture Policy Funds Assignment. ISPRS International Journal of Geo-Information, 6(8), 255. https://doi.org/10.3390/ijgi6080255 es_ES
dc.description.references Friedl, M.A., McIver, D.K., Hodges, J.C., Zhang, X.Y., Muchoney, D., Strahler, A.H., Baccini, A. 2002. Global land cover mapping from MODIS: algorithms and early results. Remote sensing of Environment, 83(1-2), 287-302. https://doi.org/10.1016/S0034-4257(02)00078-0 es_ES
dc.description.references Graves, A., Mohamed, A.R., Hinton, G. 2013. Speech recognition with deep recurrent neural networks. En 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6645-6649. https://doi.org/10.1109/ICASSP.2013.6638947 es_ES
dc.description.references Gilabert, M.A., González-Piqueras, J., García-Haro, J., 1997. Acerca de los índices de vegetación. Revista de teledetección, 8, 1-10. Disponible en http://www.aet.org.es/?q=revista8-4 es_ES
dc.description.references González-Guerrero, O., y Pons, X., 2020. The 2017 Land Use/Land Cover Map of Catalonia based on Sentinel-2 images and auxiliary data. Revista de Teledetección, 55, 81-92. https://doi.org/10.4995/raet.2020.13112 es_ES
dc.description.references Gregrio, A., Jansen, J. 2000. Land cover classification system (LCCS); Classification concepts and user manual for software version 2. Roma: FAO. es_ES
dc.description.references Griffiths, P., Nendel, C., Hostert, P. 2019. Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping. Remote Sensing of Environment, 220, 135-151. https://doi.org/10.1016/j.rse.2018.10.031 es_ES
dc.description.references Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., Yang, G.Z. 2019. XAI-Explainable artificial intelligence. Science Robotics, 4(37). https://doi.org/10.1126/scirobotics.aay7120 es_ES
dc.description.references Haralick, R.M., Shanmugam, K., Dinstein, I.H. 1973. Textural features for image classification. IEEE Transactions on systems, man, and cybernetics, 3(6), 610-621. https://doi.org/10.1109/TSMC.1973.4309314 es_ES
dc.description.references Haykin, S. 1994. Neural networks: a comprehensive foundation. River: Prentice Hall. es_ES
dc.description.references Immitzer, M., Vuolo, F., Atzberger, C. 2016. First experience with Sentinel-2 data for crop and tree species classifications in central Europe. Remote Sensing, 8(3), 166. https://doi.org/10.3390/rs8030166 es_ES
dc.description.references Hochreiter, S., Schmidhuber, J. 1997. Long short-term memory. Neural computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735 es_ES
dc.description.references Kussul, N., Lavreniuk, M., Skakun, S., Shelestov, A. 2017. Deep learning classification of land cover and crop types using remote sensing data. IEEE Geoscience and Remote Sensing Letters, 14(5), 778-782. https://doi.org/10.1109/LGRS.2017.2681128 es_ES
dc.description.references Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., Johnson, B.A. 2019. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 166-177. https://doi.org/10.1016/j.isprsjprs.2019.04.015 es_ES
dc.description.references Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P. 2016. Convolutional neural networks for large-scale remotesensing image classification. IEEE Transactions on Geoscience and Remote Sensing, 55(2), 645-657. https://doi.org/10.1109/TGRS.2016.2612821 es_ES
dc.description.references Mikolov, T., Kombrink, S., Burget, L., Černocký, J., Khudanpur, S. 2011. Extensions of recurrent neural network language model. En 2011 IEEE International Conference on acoustics, speech and signal processing (ICASSP). Praga, República Checa, 22-27 Mayo. pp. 5528-5531. https://doi.org/10.1109/ICASSP.2011.5947611 es_ES
dc.description.references Montavon, G., Samek, W., Müller, K.R. 2018. Methods for interpreting and understanding deep neural networks. Digital Signal Processing, 73, 1-15. https://doi.org/10.1016/j.dsp.2017.10.011 es_ES
dc.description.references Mou, L., Ghamisi, P., Zhu, X.X. 2017. Deep recurrent neural networks for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 55(7), 3639-3655. https://doi.org/10.1109/TGRS.2016.2636241 es_ES
dc.description.references Mountrakis, G., Im, J., Ogole, C. 2011. Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247- 259. https://doi.org/10.1016/j.isprsjprs.2010.11.001 es_ES
dc.description.references Ndikumana, E., Ho Tong Minh, D., Baghdadi, N., Courault, D., Hossard, L. 2018. Deep recurrent neural network for agricultural classification using multitemporal SAR Sentinel-1 for Camargue, France. Remote Sensing, 10(8), 1217. https://doi.org/10.3390/rs10081217 es_ES
dc.description.references Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N. 2019. Deep learning and process understanding for data-driven Earth system science. Nature, 566(7743), 195-204. https://doi.org/10.1038/s41586-019-0912-1 es_ES
dc.description.references Ruiz, L.A., Almonacid-Caballer, J., Crespo-Peremarch, P., Recio, J.A., Pardo-Pascual, J.E., SánchezGarcía, E. 2020. Automated classification of crop types and condition in a mediterranean area using a fine-tuned convolutional neural network. En The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Niza, Francia, 31 Agosto - 2 Septiembre (en línea). pp. 1061-1068. https://doi.org/10.5194/isprs-archivesXLIII-B3-2020-1061-2020 es_ES
dc.description.references Samek, W., Montavon, G., Vedaldi, A., Hansen, L. K., Muller, K.R. (Eds.). 2020. Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Cham: Springer Nature. https://doi.org/10.1007/978-3-030-28954-6 es_ES
dc.description.references Schmedtmann, J., Campagnolo, M.L. 2015. Reliable crop identification with satellite imagery in the context of common agriculture policy subsidy control. Remote Sensing, 7(7), 9325-9346. https://doi.org/10.3390/rs70709325 es_ES
dc.description.references Schuster, M., Paliwal, K.K. 1997. Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673-2681. https://doi.org/10.1109/78.650093 es_ES
dc.description.references Sitokonstantinou, V., Papoutsis, I., Kontoes, C., Lafarga Arnal, A., Armesto Andrés, A.P., Garraza Zurbano, J.A. 2018. Scalable parcel-based crop identification scheme using sentinel-2 data time-series for the monitoring of the common agricultural policy. Remote Sensing, 10(6), 911. https://doi.org/10.3390/rs10060911 es_ES
dc.description.references Story, M., Congalton, R.G. 1986. Accuracy assessment: a user's perspective. Photogrammetric Engineering and Remote Sensing, 52(3), 397-399. es_ES
dc.description.references Tapsall, B., Milenov, P., Tasdemir, K. 2010. Analysis of RapidEye imagery for annual landcover mapping as an aid to European Union (EU) common agricultural polic. En ISPRS Technical Commission VII Symposium - 100 Years ISPRS. Viena, Austria, 5-7 Julio. pp. 568-573. es_ES
dc.description.references Van Den Oord, A., Kalchbrenner, N., Kavukcuoglu, K. 2016. Pixel recurrent neural networks. En Proceedings of the 33rd International Conference on International Conference on Machine Learning. New York, EEUU., 20-22 Junio. pp. 1747-1756. es_ES
dc.description.references Vuolo, F., Neuwirth, M., Immitzer, M., Atzberger, C., Ng, W.T. 2018. How much does multi-temporal Sentinel-2 data improve crop type classification? International Journal of Applied Earth Observation and Geoinformation, 72, 122-130. https://doi.org/10.1016/j.jag.2018.06.007 es_ES
dc.description.references Wardlow, B.D., Egbert, S.L., Kastens, J.H. 2007. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains. Remote Sensing of Environment, 108(3), 290-310. https://doi.org/10.1016/j.rse.2006.11.021 es_ES
dc.description.references Watson, R.T., Noble, I.R., Bolin, B., Ravindranath, N.H., Verardo, D.J., Dokken, D.J. 2000. Land use, land-use change and forestry: a special report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. es_ES
dc.description.references Zhan, X., Defries, R., Townshend, J.R.G., Dimiceli, C., Hansen, M., Huang, C., Sohlberg, R. 2000. The 250 m global land cover change product from the Moderate Resolution Imaging Spectroradiometer of NASA's Earth Observing System. International Journal of Remote Sensing, 21(6-7), 1433-1460. https://doi.org/10.1080/014311600210254 es_ES
dc.description.references Zhang, L., Zhang, L., Du, B. 2016. Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geoscience and Remote Sensing Magazine, 4(2), 22-40. https://doi.org/10.1109/MGRS.2016.2540798 es_ES
dc.description.references Zhong, L., Hu, L., Zhou, H. 2019. Deep learning based multi-temporal crop classification. Remote sensing of environment, 221, 430-443. https://doi.org/10.1016/j.rse.2018.11.032 es_ES
dc.description.references Zhu, Z., Woodcock, C.E. 2014. Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing of Environment, 144, 152-171. https://doi.org/10.1016/j.rse.2014.01.011 es_ES
dc.description.references Zhu, X.X., Tuia, D., Mou, L., Xia, G.S., Zhang, L., Xu, F., Fraundorfer, F. 2017. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geoscience and Remote Sensing Magazine, 5(4), 8-36. https://doi.org/10.1109/MGRS.2017.2762307 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem