- -

Obtención de coberturas del suelo agropecuarias en imágenes satelitales Sentinel-2 con la inyección de imágenes de dron usando Random Forest en Google Earth Engine

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Obtención de coberturas del suelo agropecuarias en imágenes satelitales Sentinel-2 con la inyección de imágenes de dron usando Random Forest en Google Earth Engine

Show full item record

Ramírez, M.; Martínez, L.; Montilla, M.; Sarmiento, O.; Lasso, J.; Díaz, S. (2020). Obtención de coberturas del suelo agropecuarias en imágenes satelitales Sentinel-2 con la inyección de imágenes de dron usando Random Forest en Google Earth Engine. Revista de Teledetección. 0(56):49-68. https://doi.org/10.4995/raet.2020.14102

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159563

Files in this item

Item Metadata

Title: Obtención de coberturas del suelo agropecuarias en imágenes satelitales Sentinel-2 con la inyección de imágenes de dron usando Random Forest en Google Earth Engine
Secondary Title: Obtaining agricultural land cover in Sentinel-2 satellite images with drone image injection using Random Forest in Google Earth Engine
Author: Ramírez, M. Martínez, L. Montilla, M. Sarmiento, O. Lasso, J. Díaz, S.
Issued date:
Abstract:
[ES] Para obtener información precisa sobre los cambios de la cubierta terrestre en el sector agrícola, proponemos un método de clasificación supervisada que integra las imágenes del satélite Sentinel-2 con las imágenes ...[+]


[EN] To obtain accurate information on land cover changes in the agricultural sector, we propose a supervised classification method that integrates Sentinel-2 satellite imagery with images surveyed from Remote Piloted ...[+]
Subjects: Sentinel-2 , RPAS , Google Earth Engine , Supervised classification , Random Forest , Clasificación supervisada
Copyrigths: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Source:
Revista de Teledetección. (issn: 1133-0953 ) (eissn: 1988-8740 )
DOI: 10.4995/raet.2020.14102
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/raet.2020.14102
Thanks:
Departamento Administrativo Nacional de Estadística
Type: Artículo

References

Belgiu, M., Csillik, O., 2017. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sensing of Environment, 204(2018), 509-523. 9-523. https://doi.org/10.1016/j.rse.2017.10.005

Berni, J. A. J., Zarco-Tejada, P. J., Suárez, L., Fereres, E., 2009. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. Ieee Transactions on Geoscience and Remote Sensing, 47(3), 722-738. 9-523. https://doi.org/10.1016/j.rse.2017.10.005

Chen, W., Xie, X., Wang, J., Pradhan, B., Hong, H., Bui, D. T., Duan, Z., Ma, J., 2017. A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. Catena, 151(2017), 147-160. https://doi.org/10.1016/j.catena.2016.11.032 [+]
Belgiu, M., Csillik, O., 2017. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sensing of Environment, 204(2018), 509-523. 9-523. https://doi.org/10.1016/j.rse.2017.10.005

Berni, J. A. J., Zarco-Tejada, P. J., Suárez, L., Fereres, E., 2009. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. Ieee Transactions on Geoscience and Remote Sensing, 47(3), 722-738. 9-523. https://doi.org/10.1016/j.rse.2017.10.005

Chen, W., Xie, X., Wang, J., Pradhan, B., Hong, H., Bui, D. T., Duan, Z., Ma, J., 2017. A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. Catena, 151(2017), 147-160. https://doi.org/10.1016/j.catena.2016.11.032

Chuvieco, E., 2008. Teledeteccion ambiental. Barcelona: Ariel, S.A.

Corpoica. Ciencia, Tecnología e Innovación en el Sector Agropecuario (Diagnóstico para la Misión para la Transformación del Campo). Departamento Nacional de Planeación-Biblioteca. Último acceso: 13 de Mayo, 2020, de https://colaboracion.dnp.gov.co/CDT/Agriculturapecuarioforestal y pesca/Diagnóstico de la Ciencia, Tecnología e Innovación en el Sector Agropecuario-CORPOICA.pdf

DANE. Marco Maestro Rural Y Agropecuaria - Conceptualización Básica. DANE Información para todos. Último acceso: 13 de Mayo, 2020, de https://geoportal.dane.gov.co/descargas/mmra/pdf/2019_MMRA_DOCUMENTO_V1.pdf

Dash, J. P., Pearse, G. D., Watt, M. S., 2018. UAV multispectral imagery can complement satellite data for monitoring forest health. Remote Sensing, 10(8), 1-22. https://doi.org/10.3390/rs10081216

Díaz García-Cervigón, J. J., 2015. Estudio de Índices de vegetación a partir de imágenes aéreas tomadas desde UAS/RPAS y aplicaciones de estos a la agricultura de precisión [Universidad Complutense de Madrid]. https://eprints.ucm.es/31423/1/TFM_Juan_Diaz_Cervignon.pdf

ESA. Sentinel-2 User Handbook. Sentinel online. Último acceso: 8 de Julio, 2020, de https://sentinels.copernicus.eu/documents/247904/685211/Sentinel-2_User_Handbook

FAO., 2013. Plan de acción de la estrategia global para el mejoramiento de las estadísticas agropecuarias y rurales. Roma: Banco Mundial

Flood, N., 2013. Seasonal composite landsat TM/ETM+ images using the medoid (a multi-dimensional Median). Remote Sensing, 5(12), 6481-6500. https://doi.org/10.3390/rs5126481

Foody, G. M., 2002. Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80(1), 185-201. https://doi.org/10.1016/S0034-4257(01)00295-4

Gao, B. C., 1996. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote sensing of environment, 58(3), 257-266. https://doi.org/10.1016/S0034-4257(96)00067-3

Gevaert, C. M., Suomalainen, J., Tang, J., Kooistra, L., 2015. Generation of spectral-temporal response surfaces by combining multispectral satellite and hyperspectral UAV imagery for precision agriculture application. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6), 3140-3146. https://doi.org/10.1109/JSTARS.2015.2406339

Gitelson, A. A., Kaufman, Y. J., Stark, R., Rundquist, D., 2002. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 80(1), 76-87. https://doi.org/10.1016/S0034-4257(01)00289-9

González, X., Cancela, J., 2018. Utilización de imágenes de satélite y drones en horticultura. Canales sectoriales interempresas. Último acceso: 13 de Mayo, 2020, de https://www.interempresas.net/Horticola/Articulos/206464-Utilizacion-de-imagenes-de-satelite-y-drones-en-horticultura.html

HC, T., 2019. Pansharpening Sentinel-2 imagery in Google Earth Engine. Landscape Ecology & Conservation Lab. Último acceso: 13 de Mayo, 2020, de https://leclab.wixsite.com/spatial/post/pansharpening-sentinel-2-imagery-in-google-earth engine.

French, J., Montiel, K., Palmieri, V., 2014. La innovación en la agricultura: un proceso clave para el desarrollo sostenible. San José: IICA.

Jenerowicz, A., Woroszkiewicz, M., 2016. The pan-sharpening of satellite and UAV imagery for agricultural applications. En: Remote Sensing for Agriculture, Ecosystems, and Hydrology XVIII. Edinburgh, United Kingdom. 26-28 Septiembre. pp 674. https://doi.org/10.1117/12.2241645

Kaplan, G., 2018. Sentinel-2 pan sharpening-Comparative analysis. Proceedings, 2(7), 345. https://doi.org/10.3390/ecrs-2-05158

Kuhn, C., de Matos Valerio, A., Ward, N., Loken, L., Sawakuchi, H. O., Kampel, M., Richey, J., Stadler, P., Crawford, J., Striegl, R., Vermote, E., Pahlevan, N., & Butman, D. 2019. Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity. Remote Sensing of Environment, 224(January), 104-118. https://doi.org/10.1016/j.rse.2019.01.023

León, Y. Introducción a las Imágenes Satelitales. Nanopdf. Último acceso: 16 de Mayo, 2020, de https://nanopdf.com/download/introduccion-a-las-imagenes-satelitales_pdf.

Li, Y., Qu, J., Dong, W., Zheng, Y., 2018. Hyperspectral pansharpening via improved PCA approach and optimal weighted fusion strategy. Neurocomputing, 315, 371-380. https://doi.org/10.1016/j.neucom.2018.07.030

Liu, C., Frazier, P., Kumar, L., 2007. Comparative assessment of the measures of thematic classification accuracy. Remote Sensing of Environment, 107(4), 606-616. https://doi.org/10.1016/j.rse.2006.10.010

MADR. (2018). Estrategia de Política Pública para la Gestión Integral de Riesgos Agropecuarios en Colombia. Minagricultura. Último acceso: 13 de Mayo, 2020, de https://www.minagricultura.gov.co/Documents/LIBRO%20ESTRATEGIA%20VERSION%20FINAL.pdf

Metternicht, G., 2003. Vegetation indices derived from high-resolution airborne videography for precision crop management. International Journal of Remote Sensing, 24(14), 2855-2877. https://doi.org/10.1080/01431160210163074

Millard, K., Richardson, M., 2015. On the importance of training data sample selection in Random Forest image classification: A case study in peatland ecosystem mapping. Remote Sensing, 7(7), 8489-8515. https://doi.org/10.3390/rs70708489

Nonni, F., Malacarne, D., Pappalardo, S. E., Codato, D., Meggio, F., De Marchi, M., 2018. Sentinel-2 Data Analysis and Comparison with UAV Multispectral Images for Precision Viticulture. GI_Forum, 6(1), 105-116. https://doi.org/10.1553/giscience2018_01_s105

Palubinskas, G. 2013. Fast, simple, and good pan-sharpening method. Journal of Applied Remote Sensing, 7(1), 073526. https://doi.org/10.1117/1.jrs.7.073526

Peñuelas, J., Baret, F., & Filella, I., 1995. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica, 31(2), 221-230.

Pla, M., Duane, A., Brotons, L., 2017. Potencial de las imágenes UAV como datos de verdad terreno para la clasificación de la severidad de quema de imágenes landsat: Aproximaciones a un producto útil para la gestión post incendio. Revista de Teledeteccion, 2017(49), 91-102. https://doi.org/10.4995/raet.2017.7140

Pla, M., Bota, G., Duane, A., Balagué, J., Curcó, A., Gutiérrez, R., Brotons, L., 2019. Calibrating Sentinel-2 imagery with multispectral UAV derived information to quantify damages in mediterranean rice crops caused by western swamphen (Porphyrio porphyrio). Drones, 3(2), 45. https://doi.org/10.3390/drones3020045

Puerto-Caro, N., Rios-Monroy, A., & Upegui, E., 2019. Estimación de la distribución espacial del control terrestre para el proceso fotogramétrico utilizando aeronaves remotamente pilotadas. Teledetección: hacia una visión global del cambio climático, 357-360.

Rocchini, D., 2007. Effects of spatial and spectral resolution in estimating ecosystem α-diversity by satellite imagery. Remote Sensing of Environment, 111(4), 423-434. https://doi.org/10.1016/j.rse.2007.03.018

Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W. 1973, Monitoring vegetation systems in the Great Plains with ERTS. In 3rd ERTS Symposium, NASA SP-351 I, pp. 309-317.

Sebem, E., González Rivera, C., de la Vega Panizo, R., Valverde Gonzalo, A., 2005. Aportación del NDVI y los sistemas expertos en la mejora de la clasificación temática de imágenes multiespectrales. En: Anais Do XII Symposium Brasileiro de Sensoriamento Remoto. Goiânia, Brasil, 16-21 Abril. pp 2763-2771.

Stuckens, J., Coppin, P. R., Bauer, M. E., 2000. Integrating contextual information with per-pixel classification for improved land cover classification. Remote Sensing of Environment, 71(3), 282-296. https://doi.org/10.1016/S0034-4257(99)00083-8

Szantoi, Z., Smith, S. E., Strona, G., Koh, L. P., Wich, S. A., 2017. Mapping orangutan habitat and agricultural areas using Landsat OLI imagery augmented with unmanned aircraft system aerial photography. International Journal of Remote Sensing, 38(8-10), 2231-2245. https://doi.org/10.1080/01431161.2017.1280638

Traganos, D., Aggarwal, B., Poursanidis, D., Topouzelis, K., Chrysoulakis, N., Reinartz, P., 2018. Towards global-scale seagrass mapping and monitoring using Sentinel-2 on Google Earth Engine: The case study of the Aegean and Ionian seas. Remote Sensing, 10(8), 1227. https://doi.org/10.3390/rs10081227

Viña, A., Gitelson, A. A., Nguy-Robertson, A. L., & Peng, Y., 2011. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sensing of Environment, 115(12), 3468-3478. https://doi.org/10.1016/j.rse.2011.08.010

Zha, Y., Gao, J., & Ni, S., 2003. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International journal of remote sensing, 24(3), 583-594. https://doi.org/10.1080/01431160304987

Zhao, L., Shi, Y., Liu, B., Hovis, C., Duan, Y., Shi, Z., 2019. Finer Classification of Crops by Fusing UAV Images and Sentinel-2A Data. Remote Sensing, 11(24), 3012. https://doi.org/10.3390/rs11243012

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record