- -

Applying Multi-Index approach from Sentinel-2 Imagery to Extract Urban Area in dry season (Semi-Arid Land in North East Algeria)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Applying Multi-Index approach from Sentinel-2 Imagery to Extract Urban Area in dry season (Semi-Arid Land in North East Algeria)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rouibah, K. es_ES
dc.contributor.author Belabbas, M. es_ES
dc.coverage.spatial east=1.659626; north=28.033886; name=Argelia es_ES
dc.date.accessioned 2021-01-20T11:54:58Z
dc.date.available 2021-01-20T11:54:58Z
dc.date.issued 2020-11-27
dc.identifier.issn 1133-0953
dc.identifier.uri http://hdl.handle.net/10251/159565
dc.description.abstract [EN] The mapping of urban areas mostly presents a big difficulty, particularly, in arid and semi-arid environments. For that reason, in this research, we expect to increase built up accuracy mapping for Bordj Bou Arreridj city in semi-arid regions (North-East Algeria) by focusing on the identification of appropriate combination of the remotely sensed spectral indices. The study applies the ‘k–means’ classifier. In this regard, four spectral indexes were selected, namely normalized difference tillage index (NDTI) for built-up, and both bare soil index (BSI) and dry bare-soil index (DBSI), which are related to bare soil, as well as the normalized difference vegetation index (NDVI). All previous spectral indices mentioned were derived from Sentinel-2 data acquired during the dry season. Two combinations of them were generated using layer stack process, keeping both of NDTI and NDVI index constant in both combinations so that the multi-index NDTI/BSI/NDVI was the first single dataset combination, and the multi-index NDTI/DBSI/NDVI as the second component. The results show that BSI index works better with NDTI index compared to the use of DBSI index. Therefore, BSI index provides improvements: bare soil classes and built-up were better discriminated, where the overall accuracy increased by 5.67% and the kappa coefficient increased by 12.05%. The use of k-means as unsupervised classifier provides an automatic and a rapid urban area detection. Therefore, the multi-index dataset NDTI/ BSI / NDVI was suitable for mapping the cities in dry climate, and could provide a better urban management and future remote sensing applications in semi-arid areas particularly. es_ES
dc.description.abstract [ES] La cartografía de las zonas urbanas presenta una gran dificultad, especialmente en los entornos áridos y semiáridos. Por esa razón, en esta investigación esperamos aumentar la precisión de la cartografía de la ciudad de Bordj Bou Arreridj en las regiones semiáridas (noreste de Argelia) centrándose en la identificación de la combinación adecuada de los índices espectrales obtenidos por teledetección. El estudio aplica el clasificador ‘k-means’. A este respecto, se seleccionaron cuatro índices espectrales, a saber, el índice de labranza de diferencia normalizada (NDTI) para el área construida, el índice de suelo desnudo (BSI) y el índice de suelo desnudo seco (DBSI), que están relacionados con el suelo desnudo, así como el índice de vegetación de diferencia normalizada (NDVI). Todos los índices espectrales anteriores mencionados se derivaron de datos Sentinel-2 adquiridos durante la estación seca (agosto). Se generaron dos combinaciones de ellas utilizando el proceso de superposición de capas, manteniendo constante tanto el índice NDTI como el índice NDVI en ambas combinaciones, de modo que el multi-índice NDTI/BSI/NDVI fue la primera combinación de conjuntos de datos, y el multi-índice NDTI/DBSI/NDVI fue el segundo componente. Los resultados muestran que el índice BSI funciona mejor con NDTI en comparación con el uso de DBSI. Por lo tanto, BSI proporciona mejoras: las clases de suelo desnudo y la de construcciones fueron mejor discriminadas, aumentando la precisión global en un 5,67%, y el coeficiente kappa un 12,05%. El uso de k-means como clasificador no supervisado proporciona una detección del área urbana automática y rápida. Por lo tanto, el conjunto de datos de varios índices NDTI/ BSI/ NDVI fue adecuado para cartografiar las ciudades en clima seco, y podría proporcionar una mejor gestión urbana y futuras aplicaciones de teledetección en zonas semiáridas en particular. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista de Teledetección es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Sentinel-2A es_ES
dc.subject Multi- Index dataset es_ES
dc.subject Built-Up Area es_ES
dc.subject Bare Soil es_ES
dc.subject Semi-Arid Land es_ES
dc.subject Sentinel-2 es_ES
dc.subject Datos multi-índice es_ES
dc.subject Área urbanizada es_ES
dc.subject Suelo desnudo es_ES
dc.subject Tierra semiárida es_ES
dc.title Applying Multi-Index approach from Sentinel-2 Imagery to Extract Urban Area in dry season (Semi-Arid Land in North East Algeria) es_ES
dc.title.alternative Aplicación del enfoque multi-índice con imágenes Sentinel-2 para obtener áreas urbanas en la estación seca (Zonas semiáridas en el noreste de Argelia) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/raet.2020.13787
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Rouibah, K.; Belabbas, M. (2020). Applying Multi-Index approach from Sentinel-2 Imagery to Extract Urban Area in dry season (Semi-Arid Land in North East Algeria). Revista de Teledetección. 0(56):89-101. https://doi.org/10.4995/raet.2020.13787 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/raet.2020.13787 es_ES
dc.description.upvformatpinicio 89 es_ES
dc.description.upvformatpfin 101 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 0 es_ES
dc.description.issue 56 es_ES
dc.identifier.eissn 1988-8740
dc.relation.pasarela OJS\13787 es_ES
dc.description.references Al-Quraishi, A. ( 2011). Drought mapping using Geoinformation technology for some sites in the Iraqi Kurdistan region. International Journal of Digital Earth, 4, 239-257. https://doi.org/10.1080/17538947.2010.489971 es_ES
dc.description.references Becerril-Piña, R., Mastachi-Loza, C. A., González-Sosa, E., Díaz-Delgado, C., Bâ, K. M. ( 2015). Assessing desertification risk in the semi-arid highlands of central Mexico. Journal of Arid Environments, 120, 4-13. https://doi.org/10.1016/j.jaridenv.2015.04.006 es_ES
dc.description.references Bouzekri, S., Aziz Lasbet, A., Lachehab, A. ( 2015). A New Spectral Index for Extraction of Built-Up Area Using Landsat-8 Data. Journal of the Indian Society of Remote Sensing, 43. https://doi.org/10.1007/s12524-015-0460-6 es_ES
dc.description.references Bramhe, V., Ghosh, S., Garg, P. ( 2018). EXTRACTION OF BUILT-UP AREA BY COMBINING TEXTURAL FEATURES AND SPECTRAL INDICES FROM LANDSAT-8 MULTISPECTRAL IMAGE. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-5, 727-733. https://doi.org/10.5194/isprs-archives-XLII-5-727-2018 es_ES
dc.description.references Chen, W., Liu, L., Zhang, C., Wang, J., Wang, J., Pan, Y. ( 2004). Monitoring the seasonal bare soil areas in Beijing using multitemporal TM images. Paper presented at the IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium. (Vol. 5, pp. 3379-3382). https://doi.org/10.1109/IGARSS.2004.1370429 es_ES
dc.description.references Congalton, R. ( 1991). A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data (Vol. 37). https://doi.org/10.1016/0034-4257(91)90048-B es_ES
dc.description.references Congedo, L. (2016). Semi-Automatic Classification Plugin Documentation. Release 6.0.1.1. es_ES
dc.description.references Côte, M. ( 1996). L'algerie espace er societe paris: masson. es_ES
dc.description.references Daughtry, C. S. T., Serbin, G., Reeves, J. B., Doraiswamy, P. C., Hunt, E. R. ( 2010). Spectral Reflectance of Wheat Residue during Decomposition and Remotely Sensed Estimates of Residue Cover. Remote Sensing, 2(2), 416-431. https://doi.org/10.3390/rs2020416 es_ES
dc.description.references Deng, C., Wu, C. ( 2012). BCI: A biophysical composition index for remote sensing of urban environments. Remote Sensing of Environment, 127, 247-259. https://doi.org/10.1016/j.rse.2012.09.009 es_ES
dc.description.references Deventer, A., Ward, A. D., Gowda, P. H., Lyon, J. G. (1997). Using thematic mapper data to identify contrasting soil plains and tillage practices. Photogrammetric engineering and remote sensing., 63(1), 87-93. es_ES
dc.description.references Diek, S., Fornallaz, F., Schaepman, M., Jong, R. ( 2017). Barest Pixel Composite for Agricultural Areas Using Landsat Time Series. Remote Sensing, 9, 1245. https://doi.org/10.3390/rs9121245 es_ES
dc.description.references Doumit, J., Sakr, S. ( 2015). La Cartographie du Sol nu dans la Vallee de la Bekaa à partir de la Tetedetection. InterCarto. InterGIS, 1, 19-24. https://doi.org/10.24057/2414-9179-2015-1-21-19-24 es_ES
dc.description.references Drusch M, U., D. B., S., C., Colin, O., Fernandez, V., Gascon, F., . . . Bargellini, P. ( 2012). Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment, 120, 25-36. https://doi.org/10.1016/j.rse.2011.11.026 es_ES
dc.description.references Eskandari, I., Navid, H., Rangzan, K. ( 2016). Evaluating spectral indices for determining conservation and conventional tillage systems in a vetch-wheat rotation. International Soil and Water Conservation Research, 4(2), 93-98. https://doi.org/10.1016/j.iswcr.2016.04.002 es_ES
dc.description.references Ettehadi Osgouei, P., Kaya, S., Sertel, E., Alganci, U. ( 2019). Separating Built-Up Areas from Bare Land in Mediterranean Cities Using Sentinel-2A Imagery. Remote Sensing, 11(3). https://doi.org/10.3390/rs11030345 es_ES
dc.description.references Foody, G. M. ( 2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80(1), 185-201. https://doi.org/10.1016/S0034-4257(01)00295-4 es_ES
dc.description.references Gašparović, M., Zrinjski, M., Gudelj, M. ( 2019). Automatic cost-effective method for land cover classification (ALCC). Computers, Environment and Urban Systems, 76, 1-10. https://doi.org/10.1016/j.compenvurbsys.2019.03.001 es_ES
dc.description.references Gllavata, J., Ewerth, R., Freisleben, B. (2004). Text detection in images based on unsupervised classification of high-frequency wavelet coefficients. Paper presented at the Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. https://doi.org/10.1109/ICPR.2004.1334146 es_ES
dc.description.references Gupta, G., Singh, J., Pandey, P., Tomar, V., Rani, M., Kumar, P. ( 2014). Geospatial Strategy for Estimation of Soil Organic Carbon in Tropical Wildlife Reserve. pp. 69-83. https://doi.org/10.1007/978-3-319-05906-8_5. es_ES
dc.description.references Jamalabad, M. ( 2004). Forest canopy density monitoring using satellite images. Paper presented at the Geo-Imagery Bridging Continents XXth ISPRS Congress, Istanbul, Turkey, 2004. es_ES
dc.description.references Jieli, C. M., L.; Yongxue, L.; Chenglei, S.; Wei, H. ( 2010). Extract residential areas automatically by New Built-up Index. . Paper presented at the In Proceedings of the 2010 18th International Conference on Geoinformatics, Beijing, China. https://doi.org/10.1109/GEOINFORMATICS.2010.5567823 es_ES
dc.description.references Lee, J., Acharya, T., Lee, D. ( 2018). Exploring Land Cover Classification Accuracy of Landsat 8 Image using Spectral Indices Layer Stacking in Hilly Region of South Korea. Sensors and Materials, 30(12), 2927-2941. https://doi.org/2910.18494/SAM.12018.11934. es_ES
dc.description.references Leroux, L., Congedo, L., Bellón, B., Gaetano, R., Bégué, A. ( 2018). Land Cover Mapping Using Sentinel-2 Images and the Semi-Automatic Classification Plugin: A Northern Burkina Faso Case Study (pp. 131-165). https://doi.org/10.1002/9781119457107.ch4 es_ES
dc.description.references Li, H., Wang, C., Zhong, C., Su, A., Xiong, C., Wang, J., Liu, J. ( 2017). Mapping Urban Bare Land Automatically from Landsat Imagery with a Simple Index. Remote Sensing, 9(3). https://doi.org/10.3390/rs9030249 es_ES
dc.description.references Liu, Y., Chen, J., Cheng, W., Sun, C., Zhao, S., Yingxia, P. ( 2014). Spatiotemporal dynamics of the urban sprawl in a typical urban agglomeration: a case study on Southern Jiangsu, China (1983-2007). es_ES
dc.description.references Frontiers of Earth Science, 8, 490-504. https://doi.org/10.1007/s11707-014-0423-1 es_ES
dc.description.references Loi, D., Chou, T.-Y., Fang, Y.-M. ( 2017). Integration of GIS and Remote Sensing for Evaluating Forest Canopy Density Index in Thai Nguyen Province, Vietnam. International Journal of Environmental Science and Development, 8, 539-542. https://doi.org/10.18178/ijesd.2017.8.8.1012 es_ES
dc.description.references Louis, J., Debaecker, V., Pflug, B., Main-Knorn, M., Bieniarz, J., Müller-Wilm, U., . . . Gascon, F. ( 2016). SENTINEL-2 SEN2COR: L2A Processor for Users. es_ES
dc.description.references Lynch, P., Blesius, L. ( 2019). Urban Remote Sensing: Feature Extraction. es_ES
dc.description.references MacQueen, J. ( 1967). Some Methods for Classification and Analysis of Multivariate Observations. Paper presented at the In L. M. Le Cam & J. Neyman (eds.) Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability University of California Press, Berkeley, CA, USA. es_ES
dc.description.references Muna, E., Walker, S. ( 2010). Environmental Degradation of Natural Resources in Butana Area of Sudan. https://doi.org/10.1007/978-90-481-8657-0_13. es_ES
dc.description.references Nur Hidayati, I., Suharyadi, R., Danoedoro, P. ( 2018). Developing an Extraction Method of Urban Built-Up Area Based on Remote Sensing Imagery Transformation Index. Forum Geografi, 32. https://doi.org/10.23917/forgeo.v32i1.5907 es_ES
dc.description.references Pal, M., Antil, K. ( 2017). Comparison of Landsat 8 and Sentinel 2 data for Accurate Mapping of Built-Up Area and Bare Soil. Paper presented at the The 38th Asian Conference on Remote Sensing, New Delhi, India. es_ES
dc.description.references Patel, N., Mukherjee, R. ( 2014). Extraction of impervious features from spectral indices using artificial neural network. Arabian Journal of Geosciences, 8. https://doi.org/10.1007/s12517-014-1492-x es_ES
dc.description.references Rasul, A., Balzter, H., Ibrahim, G. R. F., Hameed, H. M., Wheeler, J., Adamu, B., . . . Najmaddin, P. M. ( 2018). Applying Built-Up and Bare-Soil Indices from Landsat 8 to Cities in Dry Climates. Land, 7(3), 81. https://doi.org/10.3390/land7030081 es_ES
dc.description.references Rikimaru, A., Miyatake, S. ( 1997). Development of Forest Canopy Density Mapping and Monitoring Model using Indices of Vegetation, Bare soil and Shadow. . Paper presented at the Proceeding of the 18th Asian Conference on Remote Sensing (ACRS) 1997, Kuala Lumpur, Malaysia. es_ES
dc.description.references Rikimaru, A., Roy, P., Miyatake, S. ( 2002). Tropical forest cover density mapping. Tropical ecology, 43(1), 39-47. es_ES
dc.description.references Rouse, J., Haas, R., Schell, J., Deering, D., Freden, S. ( 1973). Monitoring vegetation systems in the Great Plains with ERTS.(pp. 309-317). Paper presented at the Proceedings of 3rd Earth Resources Technology Satellite-1 Symposium. pp. 309-317 es_ES
dc.description.references Sun, G., Chen, X., Jia, X., Yao, Y., Wang, Z. ( 2016). Combinational Build-Up Index (CBI) for Effective Impervious Surface Mapping in Urban Areas. IEEE Journal of selected topics in applied earth observations and remote sensing, 9(5), 2081-2092. https://doi.org/10.1109/JSTARS.2015.2478914 es_ES
dc.description.references Tola, E., Al-Gaadi, K. A., Madugundu, R. ( 2019). Employment of GIS techniques to assess the long-term impact of tillage on the soil organic carbon of agricultural fields under hyper-arid conditions. PLOS ONE, 14, e0212521. https://doi.org/10.1371/journal.pone.0212521 es_ES
dc.description.references Tucker, C. J. ( 1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127-150. https://doi.org/10.1016/0034-4257(79)90013-0 es_ES
dc.description.references Useya, J., Chen, S., Murefu, M. ( 2019). Cropland Mapping and Change Detection: Toward Zimbabwean Cropland Inventory. IEEE Access, 7, 53603-53620. https://doi.org/10.1109/ACCESS.2019.2912807 es_ES
dc.description.references Valdiviezo-N, J., Téllez-Quiñones, A., Salazar-Garibay, A., López-Caloca, A. ( 2018). Built-up index methods and their applications for urban extraction from Sentinel 2A satellite data: discussion. Journal of the Optical Society of America A, 35, 35. https://doi.org/10.1364/JOSAA.35.000035 es_ES
dc.description.references Vanhellemont, Q., Ruddick, K. (2016). Acolite for Sentinel-2: Aquatic applications of MSI imagery. Paper presented at the Proceedings of the 2016 ESA Living Planet Symposium, 09 - 13 May 2016, es_ES
dc.description.references Prague, Czech Republic. pp. 9-13. es_ES
dc.description.references Vapnik, V. N. ( 1995). The nature of statistical learning theory: Springer-Verlag. https://doi.org/10.1007/978-1-4757-2440-0 es_ES
dc.description.references Vigneshwaran, S., Vasantha Kumar, S. ( 2018). EXTRACTION OF BUILT-UP AREA USING HIGH RESOLUTION SENTINEL-2A AND GOOGLE SATELLITE IMAGERY. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W9, 165-169. https://doi.org/10.5194/isprs-archives-XLII-4-W9-165-2018 es_ES
dc.description.references Waqar, M., Mirza, J., Mumtaz, R., Hussain, E. ( 2012). Development of New Indices for Extraction of Built-Up Area & Bare Soil from Landsat Data. Open Access Scientific Reports, 1(1), 01-04. es_ES
dc.description.references Xi, Y., Xuan Thinh, N., Li, C. ( 2019). Preliminary comparative assessment of various spectral indices for built-up land derived from Landsat-8 OLI and Sentinel-2A MSI imageries. European Journal of Remote Sensing, 52, 240-252. https://doi.org/10.1080/22797254.2019.1584737 es_ES
dc.description.references Xian, G., Homer, C., Fry, J. ( 2009). Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods. Remote Sensing of Environment, 113(6), 1133-1147. https://doi.org/10.1016/j.rse.2009.02.004 es_ES
dc.description.references Xu, H. ( 2007). Extraction of Urban Built-up Land Features from Landsat Imagery Using a Thematicoriented Index Combination Technique. Photogrammetric Engineering & Remote Sensing, 73(12), 1381-1391. https://doi.org/10.14358/PERS.73.12.1381 es_ES
dc.description.references Xu, H. ( 2008). A new index for delineating built-up land features in satellite imagery. International Journal of Remote Sensing, 29, 4269-4276. https://doi.org/10.1080/01431160802039957 es_ES
dc.description.references Yilmaz, E., Varol, B., topaloğlu, R., Sertel, E. ( 2019). Object-Based Classification of Izmir Metropolitan City by Using Sentinel-2 Images. 2019 9th International Conference on Recent Advances in Space Technologies (RAST), 407-412. https://doi.org/10.1109/RAST.2019.8767781 es_ES
dc.description.references Zha, Y., Gao, J., Ni, S. ( 2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583-594. https://doi.org/10.1080/01431160304987 es_ES
dc.description.references Zuur, A. F., Ieno, E. N., Smith, G. M. ( 2007). Principal component analysis and redundancy analysis. Analysing ecological data, 193-224. https://doi.org/10.1007/978-0-387-45972-1 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem