Agapiou, A., Alexakis, D. D., Sarris, A., Hadjimitsis, D. G. 2014. Evaluating the potentials of sentinel-2 for archaeological perspective. Remote Sensing, 6(3), 2176-2194. https://doi.org/10.3390/rs6032176
Berger, M., Moreno, J., Johannessen, J. A., Levelt, P. F., Hanssen, R. F. 2012. ESA's sentinel missions in support of Earth system science. Remote Sensing of Environment, 120, 84-90. https://doi.org/10.1016/j.rse.2011.07.023
Boyd, D. S., Danson, F. M. 2005. Satellite remote sensing of forest resources: three decades of research development. Progress in Physical Geography, 29(1), 1-26. https://doi.org/10.1191/0309133305pp432ra
[+]
Agapiou, A., Alexakis, D. D., Sarris, A., Hadjimitsis, D. G. 2014. Evaluating the potentials of sentinel-2 for archaeological perspective. Remote Sensing, 6(3), 2176-2194. https://doi.org/10.3390/rs6032176
Berger, M., Moreno, J., Johannessen, J. A., Levelt, P. F., Hanssen, R. F. 2012. ESA's sentinel missions in support of Earth system science. Remote Sensing of Environment, 120, 84-90. https://doi.org/10.1016/j.rse.2011.07.023
Boyd, D. S., Danson, F. M. 2005. Satellite remote sensing of forest resources: three decades of research development. Progress in Physical Geography, 29(1), 1-26. https://doi.org/10.1191/0309133305pp432ra
Caballero, I., Fernández, R., Moreno Escalante, O., Mamán, L., Navarro, G. 2020. New Capabilities of Sentinel-2A/B Satellites Combined with in Situ Data for Monitoring Small Harmful Algal Blooms in Complex Coastal Waters. Scientific Reports, 10, 1-14. https://doi.org/10.1038/s41598-020-65600-1
Carrasco, L., O'Neil, A.W., Morton, R.D., Rowland, C.S. 2019. Evaluating Combinations of Temporally Aggregated Sentinel-1, Sentinel-2 and Landsat 8 for Land Cover Mapping with Google Earth Engine. Remote Sens., 11, 288. https://doi.org/10.3390/ rs11030288
Claverie, M., Ju, J., Masek, J.G., Dungan, J.L., Vermote, E.F., Roger, J.-C., Skakun, S.V., Justice, C. 2018. The Harmonized Landsat and Sentinel-2 Surface Reflectance Data Set. Remote Sensing of Environment, 219, 145-61. https://doi.org/10.1016/j. rse.2018.09.002
Coluzzi, R., Imbrenda, V., Lanfredi, M., Simoniello, T. 2018. A first assessment of the Sentinel-2 Level 1-C cloud mask product to support informed surface analyses. Remote Sensing of Environment, 217, 426-443. https://doi.org/10.1016/j.rse.2018.08.009
Comber, A., Wulder, M. A. 2019. Considering spatiotemporal processes in big data analysis: Insights from remote sensing of land cover and land use. Transactions in GIS, 23, 879-891. https://doi.org/10.1111/tgis.12559
Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., . . . Bargellini, P. 2012. Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment, 120, 25-36. https://doi.org/10.1016/j.rse.2011.11.026
ESA (European Space Agency). (2016). Sentinel Data Access Annual Report. Disponible en https://sentinel.esa.int/documents/247904/2955773/Sentinel-Data-Access-Annual-Report-2016
ESA (European Space Agency). (2018). Sentinel Data Access Annual Report. Disponible en https://sentinels.copernicus.eu/web/sentinel/news/-/article/2018-sentinel-data-access-annual-report
ESA (European Space Agency). Sentinel-2 MSI Technical Guide. Último acceso 25/05/2020, de https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi
ESA (European Space Agency). Sentinel-2 MSI User Guide. Último acceso 28/05/2020, de https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi
ESA (European Space Agency). SNAP. Último acceso 20/05/2020, de https://step.esa.int/main/toolboxes/snap/
Espinosa, D., Ocegueda, S., Aguilar, C., Flores, O, Llorente-Bousquets, J. 2008. El conocimiento biogeográfico de las especies y su regionalización natural, En: Capital natural de México, vol. I: Conocimiento actual de la biodiversidad. Conabio, México, pp. 33-65.
Filipponi, F. 2018. BAIS2: Burned Area Index for Sentinel-2. Proceedings 2nd International Electronic Conference on Remote Sensing, 22 March-5 April 2018, 2, 364. https://doi.org/10.3390/ecrs-2-05177
GEE (Google Earth Engine). Sentinel-2 MSI: MultiSpectral Instrument, Level-2A. Último acceso 05/03/2020, https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18-27. https://doi.org/10.1016/j.rse.2017.06.031
Griffiths, P., Nendel, C., Hostert, P. 2019. Intra-Annual Reflectance Composites from Sentinel-2 and Landsat for National-Scale Crop and Land Cover Mapping. Remote Sensing of Environment, 220, 135-51. https://doi.org/10.1016/j.rse.2018.10.031
Heckel, K., Urban, M., Schratz, P., Mahecha, M. D., Schmullius, C. 2020. Predicting Forest Cover in Distinct Ecosystems: The Potential of Multi-Source Sentinel-1 and -2 Data Fusion. Remote Sensing, 12, 302. https://doi.org/10.3390/rs12020302
INEGI (Instituto Nacional de Estadística), CONABIO (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad), INE (Instituto Nacional de Ecología). 2008. Ecorregiones terrestres de México 1:1000000. Disponible en http://www.conabio.gob.mx/informacion/metadata/gis/ecort08gw.xml?_xsl=/db/metadata/xsl/fgdc_html.xsl&_indent=no
Li, J., Roy, D. P. 2017. A global analysis of Sentinel-2a, Sentinel-2b and Landsat-8 data revisit intervals and implications for terrestrial monitoring. Remote Sensing, 9, 902. https://doi.org/10.3390/rs9090902
Lima, T.A., Beuchle, R., Langner, A., Griess, V.C., Achard, F. 2019. Comparing Sentinel-2 MSI and Landsat 8 OLI Imagery for Monitoring Selective Logging in the Brazilian Amazon. Remote Sensing, 11, 961. https://doi.org/10.3390/rs11080961
Main-Knorn, M., Pflug, B., Louis, J., Debaecker, V., Müller-Wilm, U., Gascon, F., 2017 Sen2Cor for Sentinel-2. En: Image and Signal Processing for Remote Sensing XXIII. Varsovia, Polonia. pp 1042704-1042701.
Malenovský, Z., Rott, H., Cihlar, J., Schaepman, M. E., García-Santos, G., Fernandes, R., Berger, M. 2012. Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sensing of Environment, 120, 91-101. https://doi.org/10.1016/j.rse.2011.09.026
Melesse, A. M., Weng, Q., S.Thenkabail, P., Senay, G. B. 2007. Remote Sensing Sensors and Applications in Environmental Resources Mapping and Modelling. Sensors, 7, 3209-3241. https://doi.org/10.3390/s7123209
Pesaresi, M., Corbane, C., Julea, A., Florczyk, A.J., Syrris, V., Soille, P. 2016. Assessment of the AddedValue of Sentinel-2 for Detecting Built-up Areas. Remote Sensing, 8, 299. https://doi.org/10.3390/ rs8040299
R Core Team. (2020). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Disponible en https://www.R-project.org/
Ramoelo, A., Cho, M., Mathieu, R., Skidmore, A. K. 2015. Potential of Sentinel-2 spectral configuration to assess rangeland quality. Journal of Applied Remote Sensing, 9, 094096. https://doi.org/10.1117/1.jrs.9.094096
Roteta, E., Bastarrika, A., Padilla, M., Storm, T., Chuvieco, E. 2019. Development of a Sentinel-2 burned area algorithm: Generation of a small fire database for sub-Saharan Africa. Remote Sensing of Environment, 222, 1-17. https://doi.org/10.1016/j.rse.2018.12.011
Solórzano, J. V., Gallardo-Cruz, J. A., Peralta-Carreta, C. 2020. Potencial del acervo de imágenes Landsat disponible en Google Earth Engine para el estudio del territorio mexicano. Investigaciones Geográficas, 101(Abril), e59821. https://doi.org/dx.doi.org/10.14350/rig.59821
Sudmanns, M., Tiede, D., Augustin, H., Lang, S. 2019. Assessing global Sentinel-2 coverage dynamics and data availability for operational Earth observation (EO) applications using the EO-Compass. International Journal of Digital Earth, 1-17. https://doi.org/10.1080/17538947.2019.1572799
Van der Meer, F. D., van der Werff, H. M. A., van Ruitenbeek, F. J. A. 2014. Potential of ESA's Sentinel-2 for geological applications. Remote Sensing of Environment, 148, 124-133. https://doi.org/10.1016/j.rse.2014.03.022
Viola, D., McKay, C.P., Navarro-González, R. 2019. A Method for Monitoring Glacial Loss and Temperature Variation Using Satellite Observations: Case Study of Pico de Orizaba and Iztaccíhuatl (Mexico). Arctic, Antarctic, and Alpine Research, 51(1), 379-396. https://doi.org/10.1080/15230430.2 019.1648163
Whitcraft, A. K., Becker-Reshef, I., Justice, C. O. 2015. A framework for defining spatially explicit earth observation requirements for a global agricultural monitoring initiative (GEOGLAM). Remote Sensing, 7, 1461-1481. https://doi.org/10.3390/rs70201461
White, J. C., Wulder, M. A. 2014. The Landsat observation record of Canada: 1972 2012. Canadian Journal of Remote Sensing, 39(6), 455-467. https://doi.org/10.5589/m13-053
Wickham, H., Averick , M., Bryan, J., Chang, W., D'Agostino McGowan, L., François , R., . . . Yutani, H. 2019. Tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686
Wilson, A. M., Jetz, W. 2016. Remotely Sensed High-Resolution Global Cloud Dynamics for Predicting Ecosystem and Biodiversity Distributions. PLoS Biology, 14(3), e1002415. https://doi.org/10.1371/journal.pbio.1002415
Wulder, M. A., White, J. C., Loveland, T. R., Woodcock, C. E., Belward, A. S., Cohen, W. B., . . . Roy, D. P. 2016. The global Landsat archive: Status, consolidation, and direction. Remote Sensing of Environment, 185, 271-283. https://doi.org/10.1016/j.rse.2015.11.032
Xiao, J., Chevallier, F., Gomez, C., Guanter, L., Hicke, J. A., Huete, A. R., . . . Zhang, X. 2019. Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sensing of Environment, 233, 111383. doi:10.1016/j.rse.2019.111383
Zhou, Y., Dong, J., Liu, J., Metternicht, G., Shen, W., You, N., . . . Xiao, X. 2019. Are there sufficient Landsat observations for retrospective and continuous monitoring of land cover changes in China? Remote Sensing, 11, 1808. https://doi.org/10.3390/rs11151808
[-]