- -

Scalable analysis for arbitrary photonic integrated waveguide meshes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Scalable analysis for arbitrary photonic integrated waveguide meshes

Mostrar el registro completo del ítem

Pérez-López, D.; Capmany Francoy, J. (2019). Scalable analysis for arbitrary photonic integrated waveguide meshes. Optica. 6(1):19-27. https://doi.org/10.1364/OPTICA.6.000019

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159595

Ficheros en el ítem

Metadatos del ítem

Título: Scalable analysis for arbitrary photonic integrated waveguide meshes
Autor: Pérez-López, Daniel Capmany Francoy, José
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Fecha difusión:
Resumen:
[EN] The advances in fabrication processes in different material platforms employed in integrated optics are opening the path towards the implementation of circuits with increasing degrees of complexity. In addition to the ...[+]
Palabras clave: Programmable photonics , Integrated optics , Circuit modelling , Circuit analysis , Signal processing
Derechos de uso: Reserva de todos los derechos
Fuente:
Optica. (eissn: 2334-2536 )
DOI: 10.1364/OPTICA.6.000019
Editorial:
The Optical Society
Versión del editor: https://doi.org/10.1364/OPTICA.6.000019
Código del Proyecto:
info:eu-repo/grantAgreement/COST//CA16220/EU/European Network for High Performance Integrated Microwave Photonics/
info:eu-repo/grantAgreement/EC/H2020/741415/EU/Universal microwave photonics programmable processor for seamlessly interfacing wireless and optical ICT systems/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F103/ES/TECNOLOGIAS Y APLICACIONES FUTURAS DE LA FOTONICA DE MICROONDAS (FUTURE MWP TECHNOLOGIES & APPLICATIONS)/
Agradecimientos:
H2020 European Research Council (ERC) (ADG741415 UMWPCHIP); Generalitat Valenciana (PROMETEO 2017/103); European Cooperation in Science and Technology (COST) (CA16220 EUIMWP)
Tipo: Artículo

References

Pérez, D., Gasulla, I., Capmany, J., & Soref, R. A. (2016). Reconfigurable lattice mesh designs for programmable photonic processors. Optics Express, 24(11), 12093. doi:10.1364/oe.24.012093

Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K.-J., & Lowery, A. J. (2015). Programmable photonic signal processor chip for radiofrequency applications. Optica, 2(10), 854. doi:10.1364/optica.2.000854

Pérez, D., Gasulla, I., Crudgington, L., Thomson, D. J., Khokhar, A. Z., Li, K., … Capmany, J. (2017). Multipurpose silicon photonics signal processor core. Nature Communications, 8(1). doi:10.1038/s41467-017-00714-1 [+]
Pérez, D., Gasulla, I., Capmany, J., & Soref, R. A. (2016). Reconfigurable lattice mesh designs for programmable photonic processors. Optics Express, 24(11), 12093. doi:10.1364/oe.24.012093

Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K.-J., & Lowery, A. J. (2015). Programmable photonic signal processor chip for radiofrequency applications. Optica, 2(10), 854. doi:10.1364/optica.2.000854

Pérez, D., Gasulla, I., Crudgington, L., Thomson, D. J., Khokhar, A. Z., Li, K., … Capmany, J. (2017). Multipurpose silicon photonics signal processor core. Nature Communications, 8(1). doi:10.1038/s41467-017-00714-1

Capmany, J., Gasulla, I., & Pérez, D. (2015). The programmable processor. Nature Photonics, 10(1), 6-8. doi:10.1038/nphoton.2015.254

Perez, D., Gasulla, I., Fraile, F. J., Crudgington, L., Thomson, D. J., Khokhar, A. Z., … Capmany, J. (2017). Silicon Photonics Rectangular Universal Interferometer. Laser & Photonics Reviews, 11(6), 1700219. doi:10.1002/lpor.201700219

Miller, D. A. B. (2013). Self-configuring universal linear optical component [Invited]. Photonics Research, 1(1), 1. doi:10.1364/prj.1.000001

Miller, D. A. B. (2013). Self-aligning universal beam coupler. Optics Express, 21(5), 6360. doi:10.1364/oe.21.006360

Birth of the programmable optical chip. (2015). Nature Photonics, 10(1), 1-1. doi:10.1038/nphoton.2015.265

Reck, M., Zeilinger, A., Bernstein, H. J., & Bertani, P. (1994). Experimental realization of any discrete unitary operator. Physical Review Letters, 73(1), 58-61. doi:10.1103/physrevlett.73.58

Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S., & Walsmley, I. A. (2016). Optimal design for universal multiport interferometers. Optica, 3(12), 1460. doi:10.1364/optica.3.001460

Knill, E., Laflamme, R., & Milburn, G. J. (2001). A scheme for efficient quantum computation with linear optics. Nature, 409(6816), 46-52. doi:10.1038/35051009

Kok, P., Munro, W. J., Nemoto, K., Ralph, T. C., Dowling, J. P., & Milburn, G. J. (2007). Linear optical quantum computing with photonic qubits. Reviews of Modern Physics, 79(1), 135-174. doi:10.1103/revmodphys.79.135

O’Brien, J. L., Furusawa, A., & Vučković, J. (2009). Photonic quantum technologies. Nature Photonics, 3(12), 687-695. doi:10.1038/nphoton.2009.229

Thompson, M. G., Politi, A., Matthews, J. C. F., & O’Brien, J. L. (2011). Integrated waveguide circuits for optical quantum computing. IET Circuits, Devices & Systems, 5(2), 94. doi:10.1049/iet-cds.2010.0108

Politi, A., Matthews, J., Thompson, M. G., & O’Brien, J. L. (2009). Integrated Quantum Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 15(6), 1673-1684. doi:10.1109/jstqe.2009.2026060

Politi, A., Cryan, M. J., Rarity, J. G., Yu, S., & O’Brien, J. L. (2008). Silica-on-Silicon Waveguide Quantum Circuits. Science, 320(5876), 646-649. doi:10.1126/science.1155441

Kieling, K., O’Brien, J. L., & Eisert, J. (2010). On photonic controlled phase gates. New Journal of Physics, 12(1), 013003. doi:10.1088/1367-2630/12/1/013003

Spring, J. B., Metcalf, B. J., Humphreys, P. C., Kolthammer, W. S., Jin, X.-M., Barbieri, M., … Walmsley, I. A. (2012). Boson Sampling on a Photonic Chip. Science, 339(6121), 798-801. doi:10.1126/science.1231692

Broome, M. A., Fedrizzi, A., Rahimi-Keshari, S., Dove, J., Aaronson, S., Ralph, T. C., & White, A. G. (2012). Photonic Boson Sampling in a Tunable Circuit. Science, 339(6121), 794-798. doi:10.1126/science.1231440

Crespi, A., Osellame, R., Ramponi, R., Brod, D. J., Galvão, E. F., Spagnolo, N., … Sciarrino, F. (2013). Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nature Photonics, 7(7), 545-549. doi:10.1038/nphoton.2013.112

Lanyon, B. P., Whitfield, J. D., Gillett, G. G., Goggin, M. E., Almeida, M. P., Kassal, I., … White, A. G. (2010). Towards quantum chemistry on a quantum computer. Nature Chemistry, 2(2), 106-111. doi:10.1038/nchem.483

Harris, N. C., Bunandar, D., Pant, M., Steinbrecher, G. R., Mower, J., Prabhu, M., … Englund, D. (2016). Large-scale quantum photonic circuits in silicon. Nanophotonics, 5(3), 456-468. doi:10.1515/nanoph-2015-0146

Shen, Y., Hattink, M. H. N., Samadi, P., Cheng, Q., Hu, Z., Gazman, A., & Bergman, K. (2018). Software-defined networking control plane for seamless integration of multiple silicon photonic switches in Datacom networks. Optics Express, 26(8), 10914. doi:10.1364/oe.26.010914

Sun, C., Wade, M. T., Lee, Y., Orcutt, J. S., Alloatti, L., Georgas, M. S., … Stojanović, V. M. (2015). Single-chip microprocessor that communicates directly using light. Nature, 528(7583), 534-538. doi:10.1038/nature16454

Guillet de Chatellus, H., Cortés, L. R., & Azaña, J. (2015). Optical real-time Fourier transformation with kilohertz resolutions. Optica, 3(1), 1. doi:10.1364/optica.3.000001

Zhuang, L., Khan, M. R., Beeker, W., Leinse, A., Heideman, R., & Roeloffzen, C. (2012). Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter. Optics Express, 20(24), 26499. doi:10.1364/oe.20.026499

Ferrera, M., Park, Y., Razzari, L., Little, B. E., Chu, S. T., Morandotti, R., … Azaña, J. (2010). On-chip CMOS-compatible all-optical integrator. Nature Communications, 1(1). doi:10.1038/ncomms1028

Shen, Y., Harris, N. C., Skirlo, S., Prabhu, M., Baehr-Jones, T., Hochberg, M., … Soljačić, M. (2017). Deep learning with coherent nanophotonic circuits. Nature Photonics, 11(7), 441-446. doi:10.1038/nphoton.2017.93

Estevez, M. C., Alvarez, M., & Lechuga, L. M. (2011). Integrated optical devices for lab-on-a-chip biosensing applications. Laser & Photonics Reviews, 6(4), 463-487. doi:10.1002/lpor.201100025

Heideman, R., Hoekman, M., & Schreuder, E. (2012). TriPleX-Based Integrated Optical Ring Resonators for Lab-on-a-Chip and Environmental Detection. IEEE Journal of Selected Topics in Quantum Electronics, 18(5), 1583-1596. doi:10.1109/jstqe.2012.2188382

Ozawa, T., Price, H. M., Goldman, N., Zilberberg, O., & Carusotto, I. (2016). Synthetic dimensions in integrated photonics: From optical isolation to four-dimensional quantum Hall physics. Physical Review A, 93(4). doi:10.1103/physreva.93.043827

Harari, G., Bandres, M. A., Lumer, Y., Rechtsman, M. C., Chong, Y. D., Khajavikhan, M., … Segev, M. (2018). Topological insulator laser: Theory. Science, 359(6381). doi:10.1126/science.aar4003

Bandres, M. A., Wittek, S., Harari, G., Parto, M., Ren, J., Segev, M., … Khajavikhan, M. (2018). Topological insulator laser: Experiments. Science, 359(6381). doi:10.1126/science.aar4005

Jinguji, K., & Kawachi, M. (1995). Synthesis of coherent two-port lattice-form optical delay-line circuit. Journal of Lightwave Technology, 13(1), 73-82. doi:10.1109/50.350643

Jinguji, K. (1996). Synthesis of coherent two-port optical delay-line circuit with ring waveguides. Journal of Lightwave Technology, 14(8), 1882-1898. doi:10.1109/50.532026

Madsen, C. K. (2000). General IIR optical filter design for WDM applications using all-pass filters. Journal of Lightwave Technology, 18(6), 860-868. doi:10.1109/50.848399

Miller, D. A. B. (2015). Perfect optics with imperfect components. Optica, 2(8), 747. doi:10.1364/optica.2.000747

Burgwal, R., Clements, W. R., Smith, D. H., Gates, J. C., Kolthammer, W. S., Renema, J. J., & Walmsley, I. A. (2017). Using an imperfect photonic network to implement random unitaries. Optics Express, 25(23), 28236. doi:10.1364/oe.25.028236

Flamini, F., Spagnolo, N., Viggianiello, N., Crespi, A., Osellame, R., & Sciarrino, F. (2017). Benchmarking integrated linear-optical architectures for quantum information processing. Scientific Reports, 7(1). doi:10.1038/s41598-017-15174-2

Fandiño, J. S., Muñoz, P., Doménech, D., & Capmany, J. (2016). A monolithic integrated photonic microwave filter. Nature Photonics, 11(2), 124-129. doi:10.1038/nphoton.2016.233

Grillanda, S., Carminati, M., Morichetti, F., Ciccarella, P., Annoni, A., Ferrari, G., … Melloni, A. (2014). Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics. Optica, 1(3), 129. doi:10.1364/optica.1.000129

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem