- -

Polystyrene as Graphene Film and 3D Graphene Sponge Precursor

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Polystyrene as Graphene Film and 3D Graphene Sponge Precursor

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rendon-Patiño, Alejandra es_ES
dc.contributor.author Niu, Jinan es_ES
dc.contributor.author Doménech-Carbó, Antonio es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.contributor.author Primo Arnau, Ana Maria es_ES
dc.date.accessioned 2021-01-21T04:31:53Z
dc.date.available 2021-01-21T04:31:53Z
dc.date.issued 2019-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159604
dc.description.abstract [EN] Polystyrene as a thin film on arbitrary substrates or pellets form defective graphene/graphitic films or powders that can be dispersed in water and organic solvents. The materials were characterized by visible absorption, Raman and X-ray photoelectron spectroscopy, electron and atomic force microscopy, and electrochemistry. Raman spectra of these materials showed the presence of the expected 2D, G, and D peaks at 2750, 1590, and 1350 cm(-1), respectively. The relative intensity of the G versus the D peak was taken as a quantitative indicator of the density of defects in the G layer. es_ES
dc.description.sponsorship This research was funded by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2015-68653-CO2-R1) and Generalitat Valenciana (Prometeo 2017-083). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation MINECO/CTQ2015-68653-CO2-R1 es_ES
dc.relation.ispartof Nanomaterials es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Graphene es_ES
dc.subject Polystyrene es_ES
dc.subject 3D graphene sponges es_ES
dc.subject Electrochemistry es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Polystyrene as Graphene Film and 3D Graphene Sponge Precursor es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/nano9010101 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Rendon-Patiño, A.; Niu, J.; Doménech-Carbó, A.; García Gómez, H.; Primo Arnau, AM. (2019). Polystyrene as Graphene Film and 3D Graphene Sponge Precursor. Nanomaterials. 9(1):1-12. https://doi.org/10.3390/nano9010101 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/nano9010101 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2079-4991 es_ES
dc.identifier.pmid 30654444 es_ES
dc.identifier.pmcid PMC6358832 es_ES
dc.relation.pasarela S\407299 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Kaminsky, W. (1995). Chemical recycling of mixed plastics of pyrolysis. Advances in Polymer Technology, 14(4), 337-344. doi:10.1002/adv.1995.060140407 es_ES
dc.description.references Atherton, E. (1950). Pyrolysis of polystyrene. Journal of Polymer Science, 5(3), 378-379. doi:10.1002/pol.1950.120050310 es_ES
dc.description.references Karaduman, A., Şimşek, E. ., Çiçek, B., & Bilgesü, A. . (2001). Flash pyrolysis of polystyrene wastes in a free-fall reactor under vacuum. Journal of Analytical and Applied Pyrolysis, 60(2), 179-186. doi:10.1016/s0165-2370(00)00169-8 es_ES
dc.description.references Kim, S.-S., & Kim, S. (2004). Pyrolysis characteristics of polystyrene and polypropylene in a stirred batch reactor. Chemical Engineering Journal, 98(1-2), 53-60. doi:10.1016/s1385-8947(03)00184-0 es_ES
dc.description.references Liu, Y., Qian, J., & Wang, J. (2000). Pyrolysis of polystyrene waste in a fluidized-bed reactor to obtain styrene monomer and gasoline fraction. Fuel Processing Technology, 63(1), 45-55. doi:10.1016/s0378-3820(99)00066-1 es_ES
dc.description.references Bradt, P., Dibeler, V. H., & Mohler, F. L. (1953). A new technique for the mass spectrometric study of the pyrolysis products of polystyrene. Journal of Research of the National Bureau of Standards, 50(4), 201. doi:10.6028/jres.050.031 es_ES
dc.description.references Cameron, G. G. (1967). Die Makromolekulare Chemie, 100(1), 255-261. doi:10.1002/macp.1967.021000127 es_ES
dc.description.references Hussain, Z., Khan, K. M., Perveen, S., Hussain, K., & Voelter, W. (2012). The conversion of waste polystyrene into useful hydrocarbons by microwave-metal interaction pyrolysis. Fuel Processing Technology, 94(1), 145-150. doi:10.1016/j.fuproc.2011.10.009 es_ES
dc.description.references Onwudili, J. A., Insura, N., & Williams, P. T. (2009). Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: Effects of temperature and residence time. Journal of Analytical and Applied Pyrolysis, 86(2), 293-303. doi:10.1016/j.jaap.2009.07.008 es_ES
dc.description.references Kaminsky, W., Predel, M., & Sadiki, A. (2004). Feedstock recycling of polymers by pyrolysis in a fluidised bed. Polymer Degradation and Stability, 85(3), 1045-1050. doi:10.1016/j.polymdegradstab.2003.05.002 es_ES
dc.description.references Angyal, A., Miskolczi, N., & Bartha, L. (2007). Petrochemical feedstock by thermal cracking of plastic waste. Journal of Analytical and Applied Pyrolysis, 79(1-2), 409-414. doi:10.1016/j.jaap.2006.12.031 es_ES
dc.description.references Miandad, R., Nizami, A. S., Rehan, M., Barakat, M. A., Khan, M. I., Mustafa, A., … Murphy, J. D. (2016). Influence of temperature and reaction time on the conversion of polystyrene waste to pyrolysis liquid oil. Waste Management, 58, 250-259. doi:10.1016/j.wasman.2016.09.023 es_ES
dc.description.references Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978g es_ES
dc.description.references Primo, A., Sánchez, E., Delgado, J. M., & García, H. (2014). High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon, 68, 777-783. doi:10.1016/j.carbon.2013.11.068 es_ES
dc.description.references Latorre-Sánchez, M., Primo, A., & García, H. (2013). P-Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water-Methanol Mixtures. Angewandte Chemie International Edition, 52(45), 11813-11816. doi:10.1002/anie.201304505 es_ES
dc.description.references Dhakshinamoorthy, A., Primo, A., Concepcion, P., Alvaro, M., & Garcia, H. (2013). Doped Graphene as a Metal-Free Carbocatalyst for the Selective Aerobic Oxidation of Benzylic Hydrocarbons, Cyclooctane and Styrene. Chemistry - A European Journal, 19(23), 7547-7554. doi:10.1002/chem.201300653 es_ES
dc.description.references Dhakshinamoorthy, A., Latorre-Sanchez, M., Asiri, A. M., Primo, A., & Garcia, H. (2015). Sulphur-doped graphene as metal-free carbocatalysts for the solventless aerobic oxidation of styrenes. Catalysis Communications, 65, 10-13. doi:10.1016/j.catcom.2015.02.018 es_ES
dc.description.references Shearer, C. J., Slattery, A. D., Stapleton, A. J., Shapter, J. G., & Gibson, C. T. (2016). Accurate thickness measurement of graphene. Nanotechnology, 27(12), 125704. doi:10.1088/0957-4484/27/12/125704 es_ES
dc.description.references Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., … Geim, A. K. (2006). Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 97(18). doi:10.1103/physrevlett.97.187401 es_ES
dc.description.references Cançado, L. G., Jorio, A., Ferreira, E. H. M., Stavale, F., Achete, C. A., Capaz, R. B., … Ferrari, A. C. (2011). Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Letters, 11(8), 3190-3196. doi:10.1021/nl201432g es_ES
dc.description.references Eigler, S., Dotzer, C., & Hirsch, A. (2012). Visualization of defect densities in reduced graphene oxide. Carbon, 50(10), 3666-3673. doi:10.1016/j.carbon.2012.03.039 es_ES
dc.description.references Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., … Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558-1565. doi:10.1016/j.carbon.2007.02.034 es_ES
dc.description.references Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., … Kong, J. (2009). Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Letters, 9(1), 30-35. doi:10.1021/nl801827v es_ES
dc.description.references Wassei, J. K., & Kaner, R. B. (2010). Graphene, a promising transparent conductor. Materials Today, 13(3), 52-59. doi:10.1016/s1369-7021(10)70034-1 es_ES
dc.description.references Panchakarla, L. S., Subrahmanyam, K. S., Saha, S. K., Govindaraj, A., Krishnamurthy, H. R., Waghmare, U. V., & Rao, C. N. R. (2009). Synthesis, Structure, and Properties of Boron- and Nitrogen-Doped Graphene. Advanced Materials, NA-NA. doi:10.1002/adma.200901285 es_ES
dc.description.references Varykhalov, A., Sánchez-Barriga, J., Shikin, A. M., Biswas, C., Vescovo, E., Rybkin, A., … Rader, O. (2008). Electronic and Magnetic Properties of Quasifreestanding Graphene on Ni. Physical Review Letters, 101(15). doi:10.1103/physrevlett.101.157601 es_ES
dc.description.references Casero, E., Parra-Alfambra, A. M., Petit-Domínguez, M. D., Pariente, F., Lorenzo, E., & Alonso, C. (2012). Differentiation between graphene oxide and reduced graphene by electrochemical impedance spectroscopy (EIS). Electrochemistry Communications, 20, 63-66. doi:10.1016/j.elecom.2012.04.002 es_ES
dc.description.references Bonanni, A., & Pumera, M. (2013). High-resolution impedance spectroscopy for graphene characterization. Electrochemistry Communications, 26, 52-54. doi:10.1016/j.elecom.2012.10.013 es_ES
dc.description.references Song, Y., Feng, M., & Zhan, H. (2015). Geometry-dependent electrochemistry of graphene oxide family. Electrochemistry Communications, 56, 38-42. doi:10.1016/j.elecom.2015.04.003 es_ES
dc.description.references Zhang, L., Zhang, F., Yang, X., Long, G., Wu, Y., Zhang, T., … Chen, Y. (2013). Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors. Scientific Reports, 3(1). doi:10.1038/srep01408 es_ES
dc.description.references Zhao, J., Ren, W., & Cheng, H.-M. (2012). Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations. Journal of Materials Chemistry, 22(38), 20197. doi:10.1039/c2jm34128j es_ES
dc.description.references Gao, H., & Duan, H. (2015). 2D and 3D graphene materials: Preparation and bioelectrochemical applications. Biosensors and Bioelectronics, 65, 404-419. doi:10.1016/j.bios.2014.10.067 es_ES
dc.description.references Zhou, G., Paek, E., Hwang, G. S., & Manthiram, A. (2015). Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nature Communications, 6(1). doi:10.1038/ncomms8760 es_ES
dc.description.references Han, S., Wu, D., Li, S., Zhang, F., & Feng, X. (2013). Porous Graphene Materials for Advanced Electrochemical Energy Storage and Conversion Devices. Advanced Materials, 26(6), 849-864. doi:10.1002/adma.201303115 es_ES
dc.description.references Huang, X., Qian, K., Yang, J., Zhang, J., Li, L., Yu, C., & Zhao, D. (2012). Functional Nanoporous Graphene Foams with Controlled Pore Sizes. Advanced Materials, 24(32), 4419-4423. doi:10.1002/adma.201201680 es_ES
dc.description.references Xia, X. H., Chao, D. L., Zhang, Y. Q., Shen, Z. X., & Fan, H. J. (2014). Three-dimensional graphene and their integrated electrodes. Nano Today, 9(6), 785-807. doi:10.1016/j.nantod.2014.12.001 es_ES
dc.description.references Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26(1), 62-69. doi:10.1016/0021-9797(68)90272-5 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem