Mostrar el registro sencillo del ítem
dc.contributor.author | Vergura, Erika Pia | es_ES |
dc.contributor.author | García-Ballesteros, Sara | es_ES |
dc.contributor.author | Vercher Pérez, Rosa Francisca | es_ES |
dc.contributor.author | Santos-Juanes Jordá, Lucas | es_ES |
dc.contributor.author | Bianco Prevot, Alessandra | es_ES |
dc.contributor.author | Arqués Sanz, Antonio | es_ES |
dc.date.accessioned | 2021-01-21T04:32:06Z | |
dc.date.available | 2021-01-21T04:32:06Z | |
dc.date.issued | 2019-08 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159609 | |
dc.description.abstract | [EN] In the present work, the photo-Fenton degradation of pentachlorophenol (PCP, 1 mg/L) has been studied under simulated and natural solar irradiation; moreover, the effect on the process efficiency of urban waste-derived soluble bio-based substances (SBO), structurally comparable to humic acids, has been investigated. Experiments showed a crucial role of PCP photolysis, present in the solar pilot plant and hindered by the Pyrex (R) filter present in the solar simulator. Indeed, the SBO screen negatively affects PCP degradation when working under natural solar light, where the photolysis of PCP is relevant. In contrast, in the absence of PCP photolysis, a significant improvement of the photo-Fenton process was observed when added to SBO. Furthermore, SBO were able to extend the application of the photo-Fenton process at circumneutral pH values, due to their ability to complex iron, avoiding its precipitation as oxides or hydroxides. This positive effect has been observed at higher concentration of Fe(II) (4 mg/L), whereas at 1 mg/L, the degradation rates of PCP were comparable in the presence and absence of SBO. | es_ES |
dc.description.sponsorship | This work was realized with the financial support of the academic interchange from the Marie Sklodowska-Curie Research and Innovation Staff Exchange project, funded by the European Commission H2020-MSCA-RISE-2014 within the framework of the research project Mat4treaT (Project number: 645551). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Nanomaterials | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Pentachlorophenol | es_ES |
dc.subject | Photo-Fenton | es_ES |
dc.subject | Solar light | es_ES |
dc.subject | Bio-based substances | es_ES |
dc.subject | Urban waste | es_ES |
dc.subject.classification | QUIMICA FISICA | es_ES |
dc.title | Photo-Fenton Degradation of Pentachlorophenol: Competition between Additives and Photolysis | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/nano9081157 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/645551/EU/Enhancing water quality by developing novel materials for organic pollutant removal in tertiary water treatments/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera | es_ES |
dc.description.bibliographicCitation | Vergura, EP.; García-Ballesteros, S.; Vercher Pérez, RF.; Santos-Juanes Jordá, L.; Bianco Prevot, A.; Arqués Sanz, A. (2019). Photo-Fenton Degradation of Pentachlorophenol: Competition between Additives and Photolysis. Nanomaterials. 9(8):1-8. https://doi.org/10.3390/nano9081157 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/nano9081157 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 8 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 8 | es_ES |
dc.identifier.eissn | 2079-4991 | es_ES |
dc.identifier.pmid | 31412563 | es_ES |
dc.identifier.pmcid | PMC6723712 | es_ES |
dc.relation.pasarela | S\394943 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.description.references | Pignatello, J. J., Oliveros, E., & MacKay, A. (2006). Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Critical Reviews in Environmental Science and Technology, 36(1), 1-84. doi:10.1080/10643380500326564 | es_ES |
dc.description.references | Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J., & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 147(1), 1-59. doi:10.1016/j.cattod.2009.06.018 | es_ES |
dc.description.references | Santos-Juanes, L., Amat, A. A., & Arques, A. (2017). Strategies to Drive Photo-Fenton Process at Mild Conditions for the Removal of Xenobiotics from Aqueous Systems. Current Organic Chemistry, 21(12), 1074-1083. doi:10.2174/1385272821666170102150337 | es_ES |
dc.description.references | Ou, X., Quan, X., Chen, S., Zhao, H., & Zhang, Y. (2007). Atrazine Photodegradation in Aqueous Solution Induced by Interaction of Humic Acids and Iron: Photoformation of Iron(II) and Hydrogen Peroxide. Journal of Agricultural and Food Chemistry, 55(21), 8650-8656. doi:10.1021/jf0719050 | es_ES |
dc.description.references | De la Cruz, N., Giménez, J., Esplugas, S., Grandjean, D., de Alencastro, L. F., & Pulgarín, C. (2012). Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge. Water Research, 46(6), 1947-1957. doi:10.1016/j.watres.2012.01.014 | es_ES |
dc.description.references | Davididou, K., Chatzisymeon, E., Perez-Estrada, L., Oller, I., & Malato, S. (2019). Photo-Fenton treatment of saccharin in a solar pilot compound parabolic collector: Use of olive mill wastewater as iron chelating agent, preliminary results. Journal of Hazardous Materials, 372, 137-144. doi:10.1016/j.jhazmat.2018.03.016 | es_ES |
dc.description.references | Montoneri, E., Mainero, D., Boffa, V., Perrone, D. G., & Montoneri, C. (2011). Biochemenergy: a project to turn an urban wastes treatment plant into biorefinery for the production of energy, chemicals and consumer’s products with friendly environmental impact. International Journal of Global Environmental Issues, 11(2), 170. doi:10.1504/ijgenvi.2011.043528 | es_ES |
dc.description.references | García-Ballesteros, S., Grimalt, J., Berto, S., Minella, M., Laurenti, E., Vicente, R., … Arques, A. (2018). New Route for Valorization of Oil Mill Wastes: Isolation of Humic-Like Substances to be Employed in Solar-Driven Processes for Pollutants Removal. ACS Omega, 3(10), 13073-13080. doi:10.1021/acsomega.8b01816 | es_ES |
dc.description.references | Avetta, P., Bella, F., Bianco Prevot, A., Laurenti, E., Montoneri, E., Arques, A., & Carlos, L. (2013). Waste Cleaning Waste: Photodegradation of Monochlorophenols in the Presence of Waste-Derived Photosensitizer. ACS Sustainable Chemistry & Engineering, 1(12), 1545-1550. doi:10.1021/sc400294z | es_ES |
dc.description.references | Ballesteros, S. G., Costante, M., Vicente, R., Mora, M., Amat, A. M., Arques, A., … Einschlag, F. S. G. (2017). Humic-like substances from urban waste as auxiliaries for photo-Fenton treatment: a fluorescence EEM-PARAFAC study. Photochemical & Photobiological Sciences, 16(1), 38-45. doi:10.1039/c6pp00236f | es_ES |
dc.description.references | Gomis, J., Carlos, L., Prevot, A. B., Teixeira, A. C. S. C., Mora, M., Amat, A. M., … Arques, A. (2015). Bio-based substances from urban waste as auxiliaries for solar photo-Fenton treatment under mild conditions: Optimization of operational variables. Catalysis Today, 240, 39-45. doi:10.1016/j.cattod.2014.03.034 | es_ES |
dc.description.references | Caram, B., García-Ballesteros, S., Santos-Juanes, L., Arques, A., & García-Einschlag, F. S. (2018). Humic like substances for the treatment of scarcely soluble pollutants by mild photo-Fenton process. Chemosphere, 198, 139-146. doi:10.1016/j.chemosphere.2018.01.074 | es_ES |
dc.description.references | Alexander, M. (1981). Biodegradation of Chemicals of Environmental Concern. Science, 211(4478), 132-138. doi:10.1126/science.7444456 | es_ES |
dc.description.references | Montaño, M., Gutleb, A. C., & Murk, A. J. (2013). Persistent Toxic Burdens of Halogenated Phenolic Compounds in Humans and Wildlife. Environmental Science & Technology, 47(12), 6071-6081. doi:10.1021/es400478k | es_ES |
dc.description.references | Pera-Titus, M., Garcı́a-Molina, V., Baños, M. A., Giménez, J., & Esplugas, S. (2004). Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental, 47(4), 219-256. doi:10.1016/j.apcatb.2003.09.010 | es_ES |
dc.description.references | Soler, J., García-Ripoll, A., Hayek, N., Miró, P., Vicente, R., Arques, A., & Amat, A. M. (2009). Effect of inorganic ions on the solar detoxification of water polluted with pesticides. Water Research, 43(18), 4441-4450. doi:10.1016/j.watres.2009.07.011 | es_ES |
dc.description.references | Amat, A. M., Arques, A., Galindo, F., Miranda, M. A., Santos-Juanes, L., Vercher, R. F., & Vicente, R. (2007). Acridine yellow as solar photocatalyst for enhancing biodegradability and eliminating ferulic acid as model pollutant. Applied Catalysis B: Environmental, 73(3-4), 220-226. doi:10.1016/j.apcatb.2006.12.003 | es_ES |
dc.description.references | Gomis, J., Bianco Prevot, A., Montoneri, E., González, M. C., Amat, A. M., Mártire, D. O., … Carlos, L. (2014). Waste sourced bio-based substances for solar-driven wastewater remediation: Photodegradation of emerging pollutants. Chemical Engineering Journal, 235, 236-243. doi:10.1016/j.cej.2013.09.009 | es_ES |
dc.description.references | Avetta, P., Bianco Prevot, A., Fabbri, D., Montoneri, E., & Tomasso, L. (2012). Photodegradation of naphthalene sulfonic compounds in the presence of a bio-waste derived sensitizer. Chemical Engineering Journal, 197, 193-198. doi:10.1016/j.cej.2012.04.086 | es_ES |
dc.description.references | Zhang, J., Song, H., Liu, Y., Wang, L., Li, D., Liu, C., … Ma, J. (2019). Remarkable enhancement of a photochemical Fenton-like system (UV-A/Fe(II)/PMS) at near-neutral pH and low Fe(II)/peroxymonosulfate ratio by three alpha hydroxy acids: Mechanisms and influencing factors. Separation and Purification Technology, 224, 142-151. doi:10.1016/j.seppur.2019.04.086 | es_ES |