- -

Palladium Supported on Porous Chitosan-Graphene Oxide Aerogels as Highly Efficient Catalysts for Hydrogen Generation from Formate

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Palladium Supported on Porous Chitosan-Graphene Oxide Aerogels as Highly Efficient Catalysts for Hydrogen Generation from Formate

Show simple item record

Files in this item

dc.contributor.author Anouar, Aicha es_ES
dc.contributor.author Katir, Nadia es_ES
dc.contributor.author El Kadib, Abdelkrim es_ES
dc.contributor.author Primo Arnau, Ana Maria es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2021-01-21T04:32:12Z
dc.date.available 2021-01-21T04:32:12Z
dc.date.issued 2019-09 es_ES
dc.identifier.issn 1420-3049 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159612
dc.description.abstract [EN] Adsorption of Pd(NH3)(4)(2+) in preformed chitosan-graphene oxide (CS-GO) beads and their subsequent reduction with NaBH4 afford well-dispersed, high dispersion (similar to 21%) of uniformly sized Pd nanoparticles (similar to 1.7 nm). The resulting Pd/CS-GO exhibits interesting catalytic activity for hydrogen generation by ammonium formate decomposition. The optimal GO proportion of 7 wt% allows reaching, at 60 degrees C, a turnover frequency above 2200 h(-1)-being outstanding among the highest values reported for this process to date. Interestingly, no formation of CO or CH4 was detected. The catalyst did not leach, although it underwent gradual deactivation, probably caused by the increase in the Pd average size that became over 3 nm after three uses. Our results are relevant in the context of efficient on-board hydrogen generation from liquid organic hydrogen carriers in transportation. es_ES
dc.description.sponsorship This research was funded by the Spanish Ministry of Science, Innovation and Universities (Grant RTI2018-098237-B-C21 and Severo Ochoa). A.P. also thanks the Spanish Ministry of Science and Education a research associate Ramon y Cajal contract. A.A. thanks UEMF for scholarship. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Molecules es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Liquid hydrogen carriers es_ES
dc.subject Formate as hydrogen carrier es_ES
dc.subject Catalyst for hydrogen generation es_ES
dc.subject Palladium as catalyst for hydrogen generation es_ES
dc.subject Chitosan-graphene oxide as catalyst support es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Palladium Supported on Porous Chitosan-Graphene Oxide Aerogels as Highly Efficient Catalysts for Hydrogen Generation from Formate es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/molecules24183290 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098237-B-C21/ES/HETEROUNIONES DE GRAFENO CON CONFIGURACION CONTROLADA. SINTESIS Y APLICACIONES COMO SOPORTE EN CATALISIS Y EN ELECTRODOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Anouar, A.; Katir, N.; El Kadib, A.; Primo Arnau, AM.; García Gómez, H. (2019). Palladium Supported on Porous Chitosan-Graphene Oxide Aerogels as Highly Efficient Catalysts for Hydrogen Generation from Formate. Molecules. 24(18):1-13. https://doi.org/10.3390/molecules24183290 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/molecules24183290 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 18 es_ES
dc.identifier.pmid 31509955 es_ES
dc.identifier.pmcid PMC6767305 es_ES
dc.relation.pasarela S\393685 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Ciencia y Tecnología es_ES
dc.contributor.funder Université Euro Méditerranéenne de Fès es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.description.references Staffell, I., Scamman, D., Velazquez Abad, A., Balcombe, P., Dodds, P. E., Ekins, P., … Ward, K. R. (2019). The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science, 12(2), 463-491. doi:10.1039/c8ee01157e es_ES
dc.description.references Modisha, P. M., Ouma, C. N. M., Garidzirai, R., Wasserscheid, P., & Bessarabov, D. (2019). The Prospect of Hydrogen Storage Using Liquid Organic Hydrogen Carriers. Energy & Fuels, 33(4), 2778-2796. doi:10.1021/acs.energyfuels.9b00296 es_ES
dc.description.references Sotoodeh, F., & Smith, K. J. (2013). An overview of the kinetics and catalysis of hydrogen storage on organic liquids. The Canadian Journal of Chemical Engineering, 91(9), 1477-1490. doi:10.1002/cjce.21871 es_ES
dc.description.references Zhong, H., Iguchi, M., Chatterjee, M., Himeda, Y., Xu, Q., & Kawanami, H. (2018). Formic Acid‐Based Liquid Organic Hydrogen Carrier System with Heterogeneous Catalysts. Advanced Sustainable Systems, 2(2), 1700161. doi:10.1002/adsu.201700161 es_ES
dc.description.references Li, S., Zhou, Y., Kang, X., Liu, D., Gu, L., Zhang, Q., … Jiang, Q. (2019). A Simple and Effective Principle for a Rational Design of Heterogeneous Catalysts for Dehydrogenation of Formic Acid. Advanced Materials, 31(15), 1806781. doi:10.1002/adma.201806781 es_ES
dc.description.references Boddien, A., Mellmann, D., Gärtner, F., Jackstell, R., Junge, H., Dyson, P. J., … Beller, M. (2011). Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst. Science, 333(6050), 1733-1736. doi:10.1126/science.1206613 es_ES
dc.description.references Akbayrak, S., Tonbul, Y., & Özkar, S. (2017). Nanoceria supported palladium(0) nanoparticles: Superb catalyst in dehydrogenation of formic acid at room temperature. Applied Catalysis B: Environmental, 206, 384-392. doi:10.1016/j.apcatb.2017.01.063 es_ES
dc.description.references Bi, Q.-Y., Lin, J.-D., Liu, Y.-M., He, H.-Y., Huang, F.-Q., & Cao, Y. (2016). Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon. Angewandte Chemie, 128(39), 12028-12032. doi:10.1002/ange.201605961 es_ES
dc.description.references Li, Z., Yang, X., Tsumori, N., Liu, Z., Himeda, Y., Autrey, T., & Xu, Q. (2017). Tandem Nitrogen Functionalization of Porous Carbon: Toward Immobilizing Highly Active Palladium Nanoclusters for Dehydrogenation of Formic Acid. ACS Catalysis, 7(4), 2720-2724. doi:10.1021/acscatal.7b00053 es_ES
dc.description.references Kandile, N. G., Zaky, H. T., Mohamed, M. I., Nasr, A. S., & Ali, Y. G. (2018). Extraction and Characterization of Chitosan from Shrimp Shells. Open Journal of Organic Polymer Materials, 08(03), 33-42. doi:10.4236/ojopm.2018.83003 es_ES
dc.description.references Molnár, Á. (2019). The use of chitosan-based metal catalysts in organic transformations. Coordination Chemistry Reviews, 388, 126-171. doi:10.1016/j.ccr.2019.02.018 es_ES
dc.description.references Guibal, E. (2005). Heterogeneous catalysis on chitosan-based materials: a review. Progress in Polymer Science, 30(1), 71-109. doi:10.1016/j.progpolymsci.2004.12.001 es_ES
dc.description.references El Kadib, A., Primo, A., Molvinger, K., Bousmina, M., & Brunel, D. (2011). Nanosized Vanadium, Tungsten and Molybdenum Oxide Clusters Grown in Porous Chitosan Microspheres as Promising Hybrid Materials for Selective Alcohol Oxidation. Chemistry – A European Journal, 17(28), 7940-7946. doi:10.1002/chem.201003740 es_ES
dc.description.references Barskiy, D. A., Kovtunov, K. V., Primo, A., Corma, A., Kaptein, R., & Koptyug, I. V. (2012). Selective Hydrogenation of 1,3-Butadiene and 1-Butyne over a Rh/Chitosan Catalyst Investigated by using Parahydrogen-Induced Polarization. ChemCatChem, 4(12), 2031-2035. doi:10.1002/cctc.201200414 es_ES
dc.description.references Frindy, S., Primo, A., Lahcini, M., Bousmina, M., Garcia, H., & El Kadib, A. (2015). Pd embedded in chitosan microspheres as tunable soft-materials for Sonogashira cross-coupling in water–ethanol mixture. Green Chemistry, 17(3), 1893-1898. doi:10.1039/c4gc02175d es_ES
dc.description.references Primo, A., & Quignard, F. (2010). Chitosan as efficient porous support for dispersion of highly active gold nanoparticles: design of hybrid catalyst for carbon–carbon bond formation. Chemical Communications, 46(30), 5593. doi:10.1039/c0cc01137a es_ES
dc.description.references Chtchigrovsky, M., Primo, A., Gonzalez, P., Molvinger, K., Robitzer, M., Quignard, F., & Taran, F. (2009). Functionalized Chitosan as a Green, Recyclable, Biopolymer-Supported Catalyst for the [3+2] Huisgen Cycloaddition. Angewandte Chemie International Edition, 48(32), 5916-5920. doi:10.1002/anie.200901309 es_ES
dc.description.references Primo, A., Liebel, M., & Quignard, F. (2009). Palladium Coordination Biopolymer: A Versatile Access to Highly Porous Dispersed Catalyst for Suzuki Reaction. Chemistry of Materials, 21(4), 621-627. doi:10.1021/cm8020337 es_ES
dc.description.references El Kadib, A. (2014). Chitosan as a Sustainable Organocatalyst: A Concise Overview. ChemSusChem, 8(2), 217-244. doi:10.1002/cssc.201402718 es_ES
dc.description.references Bratskaya, S., Privar, Y., Nesterov, D., Modin, E., Kodess, M., Slobodyuk, A., … Pestov, A. (2019). Chitosan Gels and Cryogels Cross-Linked with Diglycidyl Ethers of Ethylene Glycol and Polyethylene Glycol in Acidic Media. Biomacromolecules, 20(4), 1635-1643. doi:10.1021/acs.biomac.8b01817 es_ES
dc.description.references Kadib, A. E., Bousmina, M., & Brunel, D. (2014). Recent Progress in Chitosan Bio-Based Soft Nanomaterials. Journal of Nanoscience and Nanotechnology, 14(1), 308-331. doi:10.1166/jnn.2014.9012 es_ES
dc.description.references Frindy, S., Primo, A., Ennajih, H., el kacem Qaiss, A., Bouhfid, R., Lahcini, M., … El Kadib, A. (2017). Chitosan–graphene oxide films and CO 2 -dried porous aerogel microspheres: Interfacial interplay and stability. Carbohydrate Polymers, 167, 297-305. doi:10.1016/j.carbpol.2017.03.034 es_ES
dc.description.references Valentin, R., Molvinger, K., Quignard, F., & Brunel, D. (2003). Supercritical CO2 dried chitosan: an efficient intrinsic heterogeneous catalyst in fine chemistry. New Journal of Chemistry, 27(12), 1690. doi:10.1039/b310109f es_ES
dc.description.references Huang, T., Shao, Y., Zhang, Q., Deng, Y., Liang, Z., Guo, F., … Wang, Y. (2019). Chitosan-Cross-Linked Graphene Oxide/Carboxymethyl Cellulose Aerogel Globules with High Structure Stability in Liquid and Extremely High Adsorption Ability. ACS Sustainable Chemistry & Engineering, 7(9), 8775-8788. doi:10.1021/acssuschemeng.9b00691 es_ES
dc.description.references Kolanthai, E., Sindu, P. A., Khajuria, D. K., Veerla, S. C., Kuppuswamy, D., Catalani, L. H., & Mahapatra, D. R. (2018). Graphene Oxide—A Tool for the Preparation of Chemically Crosslinking Free Alginate–Chitosan–Collagen Scaffolds for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 10(15), 12441-12452. doi:10.1021/acsami.8b00699 es_ES
dc.description.references Dobrovolná, Z., & Červený, L. (2000). Ammonium formate decomposition using palladium catalyst. Research on Chemical Intermediates, 26(5), 489-497. doi:10.1163/156856700x00480 es_ES
dc.description.references Han, D., & Yan, L. (2013). Supramolecular Hydrogel of Chitosan in the Presence of Graphene Oxide Nanosheets as 2D Cross-Linkers. ACS Sustainable Chemistry & Engineering, 2(2), 296-300. doi:10.1021/sc400352a es_ES
dc.description.references Wang, J., Tan, H., Jiang, D., & Zhou, K. (2017). Enhancing H2 evolution by optimizing H adatom combination and desorption over Pd nanocatalyst. Nano Energy, 33, 410-417. doi:10.1016/j.nanoen.2017.02.001 es_ES


This item appears in the following Collection(s)

Show simple item record