- -

Resilient and Sustainable Modular System for Temporary Sheltering in Emergency Condition

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Resilient and Sustainable Modular System for Temporary Sheltering in Emergency Condition

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Nekooie, Mohammad Ali es_ES
dc.contributor.author Tofighi, Mohammadhosein es_ES
dc.date.accessioned 2021-01-21T12:36:28Z
dc.date.available 2021-01-21T12:36:28Z
dc.date.issued 2020-12-22
dc.identifier.uri http://hdl.handle.net/10251/159674
dc.description.abstract [EN] During the hazard impact, it is very important to manage the emergency condition. Temporary sheltering is one of the preliminary and main requirements of disaster management. COVID 19 poses the necessity of using fast and modular temporary sheltering in the crowded cities to improve treating and curing services for the hospitals. However, successful emergency management for current societies is achievable if the resilience approach has been implemented in all procedures of emergency management. The concept of resilience could make a new sense of motivation in disaster management while recent research shows that resilience makes a significant improvement in the traditional approach of safety and security during disasters. Temporary shelters play an important role in the temporary settlement and also commanding the emergency condition during a disaster period. This study aims to develop a resilient modular design of shelters based on a sustainable industrialized Building system (IBS) under the main critical success factors with the approach of resilience and sustainability. Critical success factors (CSFs), resilience and sustainability criteria are extracted from literature and the CSFs are evaluated based on the questionnaire survey and using VIKOR as a multi-criteria decision-making method. The reduction of mortar usage, IBS, and Interconnected structure are the most impressive factors. Based on these factors, the symmetric orthogonal modular system was selected. The robustness of the selected system was calculated under the explosive load test. Interconnectivity, modularity, mortar-less erecting, disassembling and reassembling abilities are some of the advantages. They improve rapidity, transformability of this structure following capacities of resilience. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof VITRUVIO - International Journal of Architectural Technology and Sustainability es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject Resilience es_ES
dc.subject Modularity es_ES
dc.subject Industrialized Building System es_ES
dc.subject Emergency Management es_ES
dc.subject Temporary shelter es_ES
dc.title Resilient and Sustainable Modular System for Temporary Sheltering in Emergency Condition es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/vitruvio-ijats.2020.11946
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Nekooie, MA.; Tofighi, M. (2020). Resilient and Sustainable Modular System for Temporary Sheltering in Emergency Condition. VITRUVIO - International Journal of Architectural Technology and Sustainability. 5(2):1-15. https://doi.org/10.4995/vitruvio-ijats.2020.11946 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/vitruvio-ijats.2020.11946 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 2444-9091
dc.relation.pasarela OJS\11946 es_ES
dc.description.references Aldunce, P., Beilin, R., Handmer, J., et al. (2014) Framing disaster resilience: The implications of the diverse conceptualisations of "bouncing back". Disaster Prevention and Management 23(3): 252-270. https://doi.org/10.1108/DPM-07-2013-0130 es_ES
dc.description.references Barbier, E.B. (1987) The concept of sustainable economic development. Environmental conservation 14(02): 101-110. https://doi.org/10.1017/S0376892900011449 es_ES
dc.description.references Borghei, S.M., Nekooie, M.A., Sadeghian, H., et al. (2013) Triangular labyrinth side weirs with one and two cycles. Proceedings of the ICEWater Management 166(1): 27-42. https://doi.org/10.1680/wama.11.00032 es_ES
dc.description.references Bunster, V. and Bustamante, W. (2019) Structuring a Residential Satisfaction Model for Predictive Personalization in Mass Social Housing. Sustainability 11(14): 3943. https://doi.org/10.3390/su11143943 es_ES
dc.description.references Chao Zhang, Wen Xiu Lin, Muhammad Abududdin, et al. (2011) Sustainable Development of Urban Environment and Building Material. Advanced Materials Research 374-377(-): 43-48. https://doi.org/10.4028/www.scientific.net/AMR.374-377.43 es_ES
dc.description.references Chen, W., Zhai, G., Fan, C., et al. (2017) A planning framework based on system theory and GIS for urban emergency shelter system: A case of Guangzhou, China. Human and Ecological Risk Assessment: An International Journal 23(3): 441-456. https://doi.org/10.1080/10807039.2016.1185692 es_ES
dc.description.references Chiou H-K, Tzeng G-H and Cheng D-C (2005) Evaluating sustainable fishing development strategies using fuzzy MCDM approach. Omega 33(3): 223-234. https://doi.org/10.1016/j.omega.2004.04.011 es_ES
dc.description.references Cutter, S.L., Ahearn, J.A., Amadei, B., et al. (2013) Disaster resilience: A national imperative. Environment: Science and Policy for Sustainable Development 55(2): 25-29. https://doi.org/10.1080/00139157.2013.768076 es_ES
dc.description.references Cutter, S.L., Burton, C.G. and Emrich, C.T. (2010) Disaster resilience indicators for benchmarking baseline conditions. Journal of Homeland Security and Emergency Management 7(1). https://doi.org/10.2202/1547-7355.1732 es_ES
dc.description.references Damtoft, J.S., Lukasik, J., Herfort, D., et al. (2008) Sustainable development and climate change initiatives. Cement and Concrete Research 38(2): 115-127. https://doi.org/10.1016/j.cemconres.2007.09.008 es_ES
dc.description.references Deeb, M., Groffman, P.M., Joyner, J.L., et al. (2018) Soil and microbial properties of green infrastructure stormwater management systems. Ecological Engineering 125: 68-75. https://doi.org/10.1016/j.ecoleng.2018.10.017 es_ES
dc.description.references Duffield, M. (2015) Resilience and abandonment. Resilience: International Policies, Practices and Discourses 3(2): 137-140. https://doi.org/10.1080/21693293.2015.1022990 es_ES
dc.description.references Folke, C., Biggs, R., Norström, A., et al. (2016) Social-ecological resilience and biosphere-based sustainability science. Ecology and Society 21(3). https://doi.org/10.5751/ES-08748-210341 es_ES
dc.description.references Foster, K. (2012) In search of regional resilience. Urban and regional policy and its effects: Building resilient regions 4: 24-59. es_ES
dc.description.references Gopalakrishnan, K. and Peeta, S. (2010) Sustainable and Resilient Critical Infrastructure Systems: Simulation, Modeling, and Intelligent Engineering. Chennai, India: Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-642-11405-2 es_ES
dc.description.references Haimes, Y.Y., Crowther, K. and Horowitz, B.M. (2008) Homeland security preparedness: Balancing protection with resilience in emergent systems. Systems Engineering 11(4): 287-308. https://doi.org/10.1002/sys.20101 es_ES
dc.description.references Halldórsson, Á., Kotzab, H. and Skjøtt-Larsen, T. (2009) Supply chain management on the crossroad to sustainability: a blessing or a curse? Logistics Research 1(2): 83-94. https://doi.org/10.1007/s12159-009-0012-y es_ES
dc.description.references Haynes, H., Haynes, R. and Pender, G. (2008) Integrating socioeconomic analysis into decision-support methodology for flood risk management at the development scale (Scotland). Water and Environment Journal 22(2): 117-124. https://doi.org/10.1111/j.1747-6593.2007.00086.x es_ES
dc.description.references Henry, M. and Kato, Y. (2011) An assessment framework based on social perspectives and Analytic Hierarchy Process: A case study on sustainability in the Japanese concrete industry. Journal of Engineering and Technology Management 28(4): 300-316. https://doi.org/10.1016/j.jengtecman.2011.06.006 es_ES
dc.description.references Kenai, S., Menadi, B. and Khatib, J.M. (2014) Sustainable construction and low-carbon dioxide concrete: Algeria case. Proceedings of the ICE - Engineering Sustainability, 167. https://doi.org/10.1680/ensu.12.00024 es_ES
dc.description.references Levine, S., Pain, A., Bailey, S., et al. (2012) The Relevance of'resilience'?: ODI. es_ES
dc.description.references Lewis, J. and Kelman, I. (2010) Places, people and perpetuity: Community capacities in ecologies of catastrophe. ACME: an international e-journal for critical geographies 9(2): 191-220. es_ES
dc.description.references Lewis, T.G. (2011) Network science: Theory and applications. Hoboken, New Jersey: John Wiley & Sons. es_ES
dc.description.references Manyena, S.B. (2014) Disaster resilience: A question of 'multiple faces' and 'multiple spaces'? International Journal of Disaster Risk Reduction 8: 1-9. https://doi.org/10.1016/j.ijdrr.2013.12.010 es_ES
dc.description.references Manyena, S.B., O'Brien, G., O'Keefe, P., et al. (2011) Disaster resilience: a bounce back or bounce forward ability. Local Environment 16(5): 417-424. https://doi.org/10.1080/13549839.2011.583049 es_ES
dc.description.references Markovska, N, Taseska, V. and Pop-Jordanov, J. (2009) SWOT analyses of the national energy sector for sustainable energy development. Energy 34(6): 752-756. https://doi.org/10.1016/j.energy.2009.02.006 es_ES
dc.description.references Mohamad, M.I., Nekooie, M.A., Taherkhani, R., et al. (2012) Exploring the Potential of Using Industrialized Building System for Floating Urbanization by SWOT Analysis. Journal of Applied Sciences 12(5): 486-491. https://doi.org/10.3923/jas.2012.486.491 es_ES
dc.description.references Nappi, M.M.L., Nappi, V. and Souza, J.C .(2019) Multi-criteria decision model for the selection and location of temporary shelters in disaster management. Journal of International Humanitarian Action 4(1): 16. https://doi.org/10.1186/s41018-019-0061-z es_ES
dc.description.references Nappi, M.M.L. and Souza, J.C. (2015) Disaster management: hierarchical structuring criteria for selection and location of temporary shelters. Natural Hazards 75(3): 2421-2436. https://doi.org/10.1007/s11069-014-1437-4 es_ES
dc.description.references Nappi, M.M.L. and Souza, J.C. (2017) Temporary shelters: An architectural look at user-environment relationships. Arquiteturarevista 13(2): 112-120. es_ES
dc.description.references Omidvar, B., Baradaran-Shoraka, M. and Nojavan, M. (2013) Temporary site selection and decision-making methods: a case study of Tehran, Iran. Disasters 37(3): 536-553. https://doi.org/10.1111/disa.12007 es_ES
dc.description.references Ortiz, O., Castells, F. and Sonnemann, G. (2009) Sustainability in the construction industry: A review of recent developments based on LCA. Construction and Building Materials 23(1): 28-39. https://doi.org/10.1016/j.conbuildmat.2007.11.012 es_ES
dc.description.references Kumar Mehta, P. and Burrows, R.W. (2001) Building Durable Structures in the 21st Century. Concrete International 23(3): 7. es_ES
dc.description.references Petala, E., Wever, R., Dutilh, C., et al. (2010) The role of new product development briefs in implementing sustainability: A case study. Journal of Engineering and Technology Management 27(3-4): 172-182. https://doi.org/10.1016/j.jengtecman.2010.06.004 es_ES
dc.description.references Reghezza-Zitt, M., Rufat, S., Djament-Tran, G., et al. (2012) What resilience is not: uses and abuses. Cybergeo: European Journal of Geography. https://doi.org/10.4000/cybergeo.25554 es_ES
dc.description.references Spence, R. and Mulligan, H. (1995) Sustainable development and the construction industry. Habitat International 19(3): 279-292. https://doi.org/10.1016/0197-3975(94)00071-9 es_ES
dc.description.references Taherkhani, R., Saleh, A., Nekooie, M.A., et al. (2012) External Factors Influencing on Industrial Building System (Ibs) in Malaysia. International Journal of Sustainable Development & World Policy 1(2): 66-79. es_ES
dc.description.references Tsai, C-H. and Yeh, Y-L. (2016) The study of integrating geographic information with multi-objective decision making on allocating the appropriate refuge shelters: using Kengting National Park as an example. Natural Hazards 82(3): 2133-2147. https://doi.org/10.1007/s11069-016-2298-9 es_ES
dc.description.references UNICEF (2008) Albergues en escuela, cuándo?, cómo/, por qué? In: United Nations Office for Disaster Risk Reduction (UNISDR). http://www.eird.org/cd/toolkit08/material/Inicio/escuela_alberue/escuela-albergue.pdf. es_ES
dc.description.references Vugrin, E.D., Warren, D.E., Ehlen, M.A., et al. (2010) A framework for assessing the resilience of infrastructure and economic systems. Sustainable and resilient critical infrastructure systems. Springer, pp.77-116. https://doi.org/10.1007/978-3-642-11405-2_3 es_ES
dc.description.references Wilbanks, T.J., Fernandez, S.J. and Allen, M.R. (2015) Extreme Weather Events and Interconnected Infrastructures: Toward More Comprehensive Climate Change Planning. Environment: Science and Policy for Sustainable Development 57(4): 4-15. https://doi.org/10.1080/00139157.2015.1048134 es_ES
dc.description.references Wilbanks, T.J., Kane, S.M., Leiby, P.N., et al. (2003) Possible Responses to Global Climate Change: Integrating Mitigation and Adaptation. Environment: Science and Policy for Sustainable Development 45(5): 28-38. https://doi.org/10.1080/00139150309604547 es_ES
dc.description.references Xu, J., Yin, X., Chen, D., et al. (2016) Multi-criteria location model of earthquake evacuation shelters to aid in urban planning. International Journal of Disaster Risk Reduction 20: 51-62. https://doi.org/10.1016/j.ijdrr.2016.10.009 es_ES
dc.description.references Zobel, C.W. (2011) Representing perceived trade-offs in defining disaster resilience. Decision Support Systems 50(2011): 394-403. https://doi.org/10.1016/j.dss.2010.10.001 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem