- -

Scalable and Language-Independent Embedding-based Approach for Plagiarism Detection Considering Obfuscation Type: No Training Phase

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Scalable and Language-Independent Embedding-based Approach for Plagiarism Detection Considering Obfuscation Type: No Training Phase

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gharavi, Erfaneh es_ES
dc.contributor.author Veisi, Hadi es_ES
dc.contributor.author Rosso, Paolo es_ES
dc.date.accessioned 2021-01-26T04:31:57Z
dc.date.available 2021-01-26T04:31:57Z
dc.date.issued 2020-07 es_ES
dc.identifier.issn 0941-0643 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159837
dc.description.abstract [EN] The efficiency and scalability of plagiarism detection systems have become a major challenge due to the vast amount of available textual data in several languages over the Internet. Plagiarism occurs in different levels of obfuscation, ranging from the exact copy of original materials to text summarization. Consequently, designed algorithms to detect plagiarism should be robust to the diverse languages and different type of obfuscation in plagiarism cases. In this paper, we employ text embedding vectors to compare similarity among documents to detect plagiarism. Word vectors are combined by a simple aggregation function to represent a text document. This representation comprises semantic and syntactic information of the text and leads to efficient text alignment among suspicious and original documents. By comparing representations of sentences in source and suspicious documents, pair sentences with the highest similarity are considered as the candidates or seeds of plagiarism cases. To filter and merge these seeds, a set of parameters, including Jaccard similarity and merging threshold, are tuned by two different approaches: offline tuning and online tuning. The offline method, which is used as the benchmark, regulates a unique set of parameters for all types of plagiarism by several trials on the training corpus. Experiments show improvements in performance by considering obfuscation type during threshold tuning. In this regard, our proposed online approach uses two statistical methods to filter outlier candidates automatically by their scale of obfuscation. By employing the online tuning approach, no distinct training dataset is required to train the system. We applied our proposed method on available datasets in English, Persian and Arabic languages on the text alignment task to evaluate the robustness of the proposed methods from the language perspective as well. As our experimental results confirm, our efficient approach can achieve considerable performance on the different datasets in various languages. Our online threshold tuning approach without any training datasets works as well as, or even in some cases better than, the training-base method. es_ES
dc.description.sponsorship The work of Paolo Rosso was partially funded by the Spanish MICINN under the research Project MISMIS-FAKEn-HATE on Misinformation and Miscommunication in social media: FAKE news and HATE speech (PGC2018-096212-B-C31). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Neural Computing and Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Text alignment es_ES
dc.subject Language-independent plagiarism detection es_ES
dc.subject Word embedding es_ES
dc.subject Text representation es_ES
dc.subject Obfuscation type es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Scalable and Language-Independent Embedding-based Approach for Plagiarism Detection Considering Obfuscation Type: No Training Phase es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00521-019-04594-y es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096212-B-C31/ES/DESINFORMACION Y AGRESIVIDAD EN SOCIAL MEDIA: AGREGANDO INFORMACION Y ANALIZANDO EL LENGUAJE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Gharavi, E.; Veisi, H.; Rosso, P. (2020). Scalable and Language-Independent Embedding-based Approach for Plagiarism Detection Considering Obfuscation Type: No Training Phase. Neural Computing and Applications. 32(14):10593-10607. https://doi.org/10.1007/s00521-019-04594-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00521-019-04594-y es_ES
dc.description.upvformatpinicio 10593 es_ES
dc.description.upvformatpfin 10607 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 32 es_ES
dc.description.issue 14 es_ES
dc.relation.pasarela S\409341 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Agarwal B, Ramampiaro H, Langseth H, Ruocco M (2018) A deep network model for paraphrase detection in short text messages. Inf Process Manag 54(6):922–937 es_ES
dc.description.references Al-Suhaiqi M, Hazaa MAS, Albared M (2018) Arabic English cross-lingual plagiarism detection based on keyphrases extraction, monolingual and machine learning approach. Asian J Res Comput Sci 2:1–12 es_ES
dc.description.references Alvi F, Stevenson M, Clough PD (2014) Hashing and merging heuristics for text reuse detection. CLEF (working notes), pp 939–946 es_ES
dc.description.references Asghari H, Mohtaj S, Fatemi O, Faili H, Rosso P, Potthast M (2016) Algorithms and corpora for Persian plagiarism detection. In: CEUR workshop proceedings, 1737, pp 135–144 es_ES
dc.description.references Bengio Y, Ducharme R, Vincent P, Janvin C (2003) A neural probabilistic language model. J Mach Learn Res 3:1137–1155. https://doi.org/10.1162/153244303322533223 es_ES
dc.description.references Bojanowski P, Grave E, Joulin A, Mikolov T (2016) Enriching word vectors with subword information. ArXiv preprint arXiv:1607.04606 es_ES
dc.description.references Chong M, Specia L, Mitkov R (2010) Using natural language processing for automatic detection of plagiarism. Language. Retrieved from http://clg.wlv.ac.uk/papers/show_paper.php?ID=272 es_ES
dc.description.references Clough P (2003) Old and new challenges in automatic plagiarism detection. National Plagiarism Advisory Service (February), 14. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Old+and+new+challenges+in+automatic+plagiarism+detection#0 es_ES
dc.description.references Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P (2011) Natural language processing (almost) from scratch. J Mach Learn Res 12:2493–2537 es_ES
dc.description.references Ehsan N, Shakery A, Tompa FW (2018) Cross-lingual text alignment for fine-grained plagiarism detection. J Inf Sci. https://doi.org/10.1177/0165551518787696 es_ES
dc.description.references Esteki F, Esfahani FS (2016) A plagiarism detection approach based on SVM for Persian texts. In: CEUR workshop proceedings, 1737, pp 149–153 es_ES
dc.description.references Ferrero J, Besacier L, Schwab D, Agnès F (2017) Using word embedding for cross-language plagiarism detection. In: Proceedings of the 15th conference of the European chapter of the association for computational linguistics: volume 2, short papers. https://doi.org/10.18653/v1/E17-2066 es_ES
dc.description.references Firth JR (1957) A synopsis of linguistic theory, 1930–1955. Studies in linguistic analysis es_ES
dc.description.references Gharavi E, Veisi H, Bijari K, Zahirnia K (2018) A fast multi-level plagiarism detection method based on document embedding representation. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). https://doi.org/10.1007/978-3-319-73606-8_7 es_ES
dc.description.references Gharavi E, Bijari K, Veisi H, Zahirnia K (2016) A deep learning approach to Persian plagiarism detection. Retrieved from https://pdfs.semanticscholar.org/b0a8/7335289264368a7ee804acc7715fc4799310.pdf es_ES
dc.description.references Glinos DG (2014) A hybrid architecture for plagiarism detection. CLEF (working notes), pp 958–965 es_ES
dc.description.references Gross P, Modaresi P (2014) Plagiarism alignment detection by merging context seeds. CLEF (working notes), pp 966–972 es_ES
dc.description.references Hinton G (1986) Learning distributed representations of concepts. In: CSS, pp 1–12. https://doi.org/10.1109/69.917563 es_ES
dc.description.references Hoad TC, Zobel J (2003) Methods for identifying versioned and plagiarized documents. J Am Soc Inf Sci Technol 54:203–215. https://doi.org/10.1002/asi.10170 es_ES
dc.description.references Kalchbrenner N, Grefenstette E, Blunsom P (2014) A convolutional neural network for modelling sentences. In: ACL, pp 655–665. https://doi.org/10.3115/v1/P14-1062 es_ES
dc.description.references Le QV, Mikolov T (2014) Distributed representations of sentences and documents, vol 32. https://doi.org/10.1145/2740908.2742760 es_ES
dc.description.references Leilei K, Haoliang Q, Cuixia D, Mingxing W, Zhongyuan H (2013) Approaches for source retrieval and text alignment of plagiarism detection: notebook for PAN at CLEF 2013. In: CEUR workshop proceedings, 1179 es_ES
dc.description.references Leilei K, Haoliang Q, Shuai W, Cuixia D (2012) Approaches for candidate document retrieval and detailed comparison of plagiarism detection. Notebook for PAN at CLEF 2012. Retrieved from http://www.uni-weimar.de/medien/webis/research/events/pan-12/pan12-papers-final/pan12-plagiarism-detection/kong12-notebook.pdf es_ES
dc.description.references Livermore MA, Dadgostari F, Guim M, Beling P, Rockmore D (2018) Law search as prediction. Virginia Public Law and Legal Theory Research Paper (2018-61) es_ES
dc.description.references Mashhadirajab F, Shamsfard M (2016) A text alignment algorithm based on prediction of obfuscation types using SVM neural network. FIRE (working notes), pp 167–171 es_ES
dc.description.references Mikolov T, Corrado G, Chen K, Dean J (2013) Efficient estimation of word representations in vector space. In: Proceedings of the international conference on learning representations (ICLR 2013), pp 1–12. https://doi.org/10.1162/153244303322533223 es_ES
dc.description.references Mikolov T, Yih W, Zweig G (2013) Linguistic regularities in continuous space word representations. In: Proceedings of NAACL-HLT (June), pp 746–751. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Linguistic+Regularities+in+Continuous+Space+Word+Representations#0%5Cnhttps://www.aclweb.org/anthology/N/N13/N13-1090.pdf es_ES
dc.description.references Minaei B, Niknam M (2016) An n-gram based method for nearly copy detection in plagiarism systems. FIRE (working notes), pp 172–175 es_ES
dc.description.references Mitchell J, Lapata M (2010) Composition in distributional models of semantics. Cognit Sci 34(8):1388–1429. https://doi.org/10.1111/j.1551-6709.2010.01106.x es_ES
dc.description.references Momtaz M, Bijari K, Salehi M, Veisi H (2016) Graph-based approach to text alignment for plagiarism detection in persian documents. FIRE (working notes), pp 176–179 es_ES
dc.description.references Palkovskii Y, Belov A (2013) Using hybrid similarity methods for plagiarism detection. Notebook for PAN at CLEF 2013 es_ES
dc.description.references Palkovskii Y, Belov A (2014) Developing high-resolution universal multi-type N-gram plagiarism detector. Working notes papers of the CLEF 2014 evaluation labs, pp 984–989 es_ES
dc.description.references Pennington J, Socher R, Manning CD (2014) GloVe: global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing, pp 1532–1543. https://doi.org/10.3115/v1/D14-1162 es_ES
dc.description.references Potthast M, Stein B, Eiselt A, Barrón-Cedeño A, Rosso P (2009) Overview of the 1st international competition on plagiarism detection. In: SEPLN 09 workshop on uncovering plagiarism, authorship, and social software misuse, pp 1–9. Retrieved from http://ceur-ws.org/Vol-502 es_ES
dc.description.references Potthast M, Hagen M, Beyer A, Busse M, Tippmann M, Rosso P, Stein B (2014) Overview of the 6th international competition on plagiarism detection. Notebook for PAN at CLEF 2014, pp 845–876 es_ES
dc.description.references Potthast M, Hagen M, Gollub T, Tippmann M, Kiesel J, Rosso P, Stamatatos E, Stein B (2013) Overview of the 5th international competition on plagiarism detection. In: CEUR workshop proceedings, 1179 es_ES
dc.description.references Potthast M, Stein B, Barrón-cedeño A, Rosso P (2010) An evaluation framework for plagiarism detection. In: Proceedings of the 23rd international conference on computational linguistics (COLING 2010) (August), pp 997–1005. Retrieved from http://dl.acm.org/citation.cfm?id=1944566.1944681 es_ES
dc.description.references Qimin C, Qiao G, Yongliang W, Xianghua W (2015) Text clustering using VSM with feature clusters. Neural Comput Appl 26(4):995–1003 es_ES
dc.description.references Rodríguez Torrejón D, Martín Ramos J (2014) CoReMo 2.3 plagiarism detector text alignment module: notebook for PAN at CLEF 2014. In: CEUR workshop proceedings, 1180, pp 997–1003 es_ES
dc.description.references Sanchez-Perez MA, Sidorov G, Gelbukh A (2014) The winning approach to text alignment for text reuse detection at PAN 2014: notebook for PAN at CLEF 2014. In: CEUR workshop proceedings, 1180, pp 1004–1011 es_ES
dc.description.references Sánchez-Vega F, Villatoro-Tello E, Montes-y-Gómez M, Rosso P, Stamatatos E, Villaseñor-Pineda L (2019) Paraphrase plagiarism identification with character-level features. Pattern Anal Appl 22(2):669–681 es_ES
dc.description.references Shrestha P, Maharjan S, Solorio T (2014) Machine translation evaluation metric for text alignment. CLEF (working notes), pp 1012–1016 es_ES
dc.description.references Shrestha P, Solorio T (2013) Using a variety of n-grams for the detection of different kinds of plagiarism. Notebook for PAN at CLEF es_ES
dc.description.references Socher R (2014) Recursive deep learning for natural language processing and computer vision. Ph.D. thesis (August). https://papers.nips.cc/paper/4204-dynamic-pooling-and-unfolding-recursive-autoencoders-for-paraphrase-detection.pdf es_ES
dc.description.references Socher R, Huang E, Pennington J (2011) Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In: Advances in neural information processing systems, pp 801–809. Retrieved from http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2011_0538.pdf%5Cnhttps://papers.nips.cc/paper/4204-dynamic-pooling-and-unfolding-recursive-autoencoders-for-paraphrase-detection.pdf es_ES
dc.description.references Socher R, Manning CDC, Ng AYA (2010) Learning continuous phrase representations and syntactic parsing with recursive neural networks. In: Proceedings of the NIPS-2010 deep learning and unsupervised feature learning workshop, pp 1–9. https://doi.org/10.1007/978-3-540-87479-9 es_ES
dc.description.references Socher R, Manning C, Huval B, Ng A (2012) Semantic compositionality through recursive matrix-vector spaces. In: EMNLP-CoNLL’12: Proceedings of the 2012 joint conference on empirical methods in natural language processing and computational natural language learning, pp 1201–1211. https://doi.org/10.1162/153244303322533223 es_ES
dc.description.references Suchomel Š, Kasprzak J, Brandejs M et al (2013) Diverse queries and feature type selection for plagiarism discovery. Notebook for PAN at CLEF 2013 es_ES
dc.description.references Tai KS, Socher R, Manning CD (2015) Improved semantic representations from tree-structured long short-term memory networks. Proc ACL. https://doi.org/10.1515/popets-2015-0023 es_ES
dc.description.references Talebpour A, Shirzadi M, Aminolroaya Z (2016) Plagiarism detection based on a novel trie-based approach. In: CEUR workshop proceedings, 1737, pp 180–183 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem