dc.contributor.author |
Ruiz García, Rubén
|
es_ES |
dc.contributor.author |
Pan, Quan-Ke
|
es_ES |
dc.contributor.author |
Naderi, Bahman
|
es_ES |
dc.date.accessioned |
2021-01-26T04:32:05Z |
|
dc.date.available |
2021-01-26T04:32:05Z |
|
dc.date.issued |
2019-03 |
es_ES |
dc.identifier.issn |
0305-0483 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/159840 |
|
dc.description.abstract |
[EN] Large manufacturing firms operate more than one production center. As a result, in relation to scheduling problems, which factory manufactures which product is an important consideration. In this paper we study an extension of the well known permutation flowshop scheduling problem in which there is a set of identical factories, each one with a flowshop structure. The objective is to minimize the maximum completion time or makespan among all factories. The resulting problem is known as the distributed permutation flowshop and has attracted considerable interest over the last few years. Contrary to the recent trend in the scheduling literature, where complex nature-inspired or metaphor-based methods are often proposed, we present simple Iterated Greedy algorithms that have performed well in related problems. Improved initialization, construction and destruction procedures, along with a local search with a strong intensification are proposed. The result is a very effective algorithm with little problem-specific knowledge that is shown to provide demonstrably better solutions in a comprehensive and thorough computational and statistical campaign. |
es_ES |
dc.description.sponsorship |
Ruben Ruiz is partially supported by the Spanish Ministry of Economy and Competitiveness, under the project "SCHEYARD - Optimization of Scheduling Problems in Container Yards" (No. DPI2015-65895-R) financed by FEDER funds. Quan-Ke Pan is supported by the National Natural Science Foundation of China (Grant No. 51575212). |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
Elsevier |
es_ES |
dc.relation.ispartof |
Omega |
es_ES |
dc.rights |
Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) |
es_ES |
dc.subject |
Distributed flowshop |
es_ES |
dc.subject |
Makespan |
es_ES |
dc.subject |
Metaheuristics |
es_ES |
dc.subject |
Iterated Greedy |
es_ES |
dc.subject.classification |
ESTADISTICA E INVESTIGACION OPERATIVA |
es_ES |
dc.title |
Iterated Greedy methods for the distributed permutation flowshop scheduling problem |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1016/j.omega.2018.03.004 |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/NSFC//51575212/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094940-B-I00/ES/OPTIMIZACION DE OPERACIONES EN TERMINALES PORTUARIAS/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat |
es_ES |
dc.description.bibliographicCitation |
Ruiz García, R.; Pan, Q.; Naderi, B. (2019). Iterated Greedy methods for the distributed permutation flowshop scheduling problem. Omega. 83:213-222. https://doi.org/10.1016/j.omega.2018.03.004 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.1016/j.omega.2018.03.004 |
es_ES |
dc.description.upvformatpinicio |
213 |
es_ES |
dc.description.upvformatpfin |
222 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
83 |
es_ES |
dc.relation.pasarela |
S\405880 |
es_ES |
dc.contributor.funder |
Agencia Estatal de Investigación |
es_ES |
dc.contributor.funder |
European Regional Development Fund |
es_ES |
dc.contributor.funder |
National Natural Science Foundation of China |
es_ES |
dc.description.references |
Behnamian, J., & Fatemi Ghomi, S. M. T. (2014). A survey of multi-factory scheduling. Journal of Intelligent Manufacturing, 27(1), 231-249. doi:10.1007/s10845-014-0890-y |
es_ES |
dc.description.references |
Chan, H. K., & Chung, S. H. (2013). Optimisation approaches for distributed scheduling problems. International Journal of Production Research, 51(9), 2571-2577. doi:10.1080/00207543.2012.755345 |
es_ES |
dc.description.references |
Deng, J., & Wang, L. (2017). A competitive memetic algorithm for multi-objective distributed permutation flow shop scheduling problem. Swarm and Evolutionary Computation, 32, 121-131. doi:10.1016/j.swevo.2016.06.002 |
es_ES |
dc.description.references |
Fernandez-Viagas, V., & Framinan, J. M. (2014). A bounded-search iterated greedy algorithm for the distributed permutation flowshop scheduling problem. International Journal of Production Research, 53(4), 1111-1123. doi:10.1080/00207543.2014.948578 |
es_ES |
dc.description.references |
Fernandez-Viagas, V., Ruiz, R., & Framinan, J. M. (2017). A new vision of approximate methods for the permutation flowshop to minimise makespan: State-of-the-art and computational evaluation. European Journal of Operational Research, 257(3), 707-721. doi:10.1016/j.ejor.2016.09.055 |
es_ES |
dc.description.references |
Framinan, J. M., Gupta, J. N. D., & Leisten, R. (2004). A review and classification of heuristics for permutation flow-shop scheduling with makespan objective. Journal of the Operational Research Society, 55(12), 1243-1255. doi:10.1057/palgrave.jors.2601784 |
es_ES |
dc.description.references |
Gao, J., & Chen, R. (2011). A hybrid genetic algorithm for the distributed permutation flowshop scheduling problem. International Journal of Computational Intelligence Systems, 4(4), 497-508. doi:10.1080/18756891.2011.9727808 |
es_ES |
dc.description.references |
Gao, J., Chen, R., & Deng, W. (2013). An efficient tabu search algorithm for the distributed permutation flowshop scheduling problem. International Journal of Production Research, 51(3), 641-651. doi:10.1080/00207543.2011.644819 |
es_ES |
dc.description.references |
Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The Complexity of Flowshop and Jobshop Scheduling. Mathematics of Operations Research, 1(2), 117-129. doi:10.1287/moor.1.2.117 |
es_ES |
dc.description.references |
Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. H. G. R. (1979). Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey. Annals of Discrete Mathematics, 287-326. doi:10.1016/s0167-5060(08)70356-x |
es_ES |
dc.description.references |
Gupta, J. N. D., & Stafford, E. F. (2006). Flowshop scheduling research after five decades. European Journal of Operational Research, 169(3), 699-711. doi:10.1016/j.ejor.2005.02.001 |
es_ES |
dc.description.references |
Hatami, S., Ruiz, R., & Andrés-Romano, C. (2013). The Distributed Assembly Permutation Flowshop Scheduling Problem. International Journal of Production Research, 51(17), 5292-5308. doi:10.1080/00207543.2013.807955 |
es_ES |
dc.description.references |
Hatami, S., Ruiz, R., & Andrés-Romano, C. (2015). Heuristics and metaheuristics for the distributed assembly permutation flowshop scheduling problem with sequence dependent setup times. International Journal of Production Economics, 169, 76-88. doi:10.1016/j.ijpe.2015.07.027 |
es_ES |
dc.description.references |
Reza Hejazi *, S., & Saghafian, S. (2005). Flowshop-scheduling problems with makespan criterion: a review. International Journal of Production Research, 43(14), 2895-2929. doi:10.1080/0020754050056417 |
es_ES |
dc.description.references |
Johnson, S. M. (1954). Optimal two- and three-stage production schedules with setup times included. Naval Research Logistics Quarterly, 1(1), 61-68. doi:10.1002/nav.3800010110 |
es_ES |
dc.description.references |
Kendall, G., Bai, R., Błazewicz, J., De Causmaecker, P., Gendreau, M., John, R., … Yee, A. (2016). Good Laboratory Practice for optimization research. Journal of the Operational Research Society, 67(4), 676-689. doi:10.1057/jors.2015.77 |
es_ES |
dc.description.references |
Lin, S.-W., Ying, K.-C., & Huang, C.-Y. (2013). Minimising makespan in distributed permutation flowshops using a modified iterated greedy algorithm. International Journal of Production Research, 51(16), 5029-5038. doi:10.1080/00207543.2013.790571 |
es_ES |
dc.description.references |
MACCARTHY, B. L., & LIU, J. (1993). Addressing the gap in scheduling research: a review of optimization and heuristic methods in production scheduling. International Journal of Production Research, 31(1), 59-79. doi:10.1080/00207549308956713 |
es_ES |
dc.description.references |
MCKAY, K., PINEDO, M., & WEBSTER, S. (2009). PRACTICE-FOCUSED RESEARCH ISSUES FOR SCHEDULING SYSTEMS*. Production and Operations Management, 11(2), 249-258. doi:10.1111/j.1937-5956.2002.tb00494.x |
es_ES |
dc.description.references |
McKay, K. N., Safayeni, F. R., & Buzacott, J. A. (1988). Job-Shop Scheduling Theory: What Is Relevant? Interfaces, 18(4), 84-90. doi:10.1287/inte.18.4.84 |
es_ES |
dc.description.references |
Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers & Operations Research, 24(11), 1097-1100. doi:10.1016/s0305-0548(97)00031-2 |
es_ES |
dc.description.references |
Naderi, B., & Ruiz, R. (2010). The distributed permutation flowshop scheduling problem. Computers & Operations Research, 37(4), 754-768. doi:10.1016/j.cor.2009.06.019 |
es_ES |
dc.description.references |
Naderi, B., & Ruiz, R. (2014). A scatter search algorithm for the distributed permutation flowshop scheduling problem. European Journal of Operational Research, 239(2), 323-334. doi:10.1016/j.ejor.2014.05.024 |
es_ES |
dc.description.references |
Nawaz, M., Enscore, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega, 11(1), 91-95. doi:10.1016/0305-0483(83)90088-9 |
es_ES |
dc.description.references |
Pan, Q.-K., & Ruiz, R. (2014). An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem. Omega, 44, 41-50. doi:10.1016/j.omega.2013.10.002 |
es_ES |
dc.description.references |
Pan, Q.-K., Ruiz, R., & Alfaro-Fernández, P. (2017). Iterated search methods for earliness and tardiness minimization in hybrid flowshops with due windows. Computers & Operations Research, 80, 50-60. doi:10.1016/j.cor.2016.11.022 |
es_ES |
dc.description.references |
Rad, S. F., Ruiz, R., & Boroojerdian, N. (2009). New high performing heuristics for minimizing makespan in permutation flowshops. Omega, 37(2), 331-345. doi:10.1016/j.omega.2007.02.002 |
es_ES |
dc.description.references |
Reisman, A., Kumar, A., & Motwani, J. (1997). Flowshop scheduling/sequencing research: a statistical review of the literature, 1952-1994. IEEE Transactions on Engineering Management, 44(3), 316-329. doi:10.1109/17.618173 |
es_ES |
dc.description.references |
Ribas, I., Companys, R., & Tort-Martorell, X. (2017). Efficient heuristics for the parallel blocking flow shop scheduling problem. Expert Systems with Applications, 74, 41-54. doi:10.1016/j.eswa.2017.01.006 |
es_ES |
dc.description.references |
Rifai, A. P., Nguyen, H.-T., & Dawal, S. Z. M. (2016). Multi-objective adaptive large neighborhood search for distributed reentrant permutation flow shop scheduling. Applied Soft Computing, 40, 42-57. doi:10.1016/j.asoc.2015.11.034 |
es_ES |
dc.description.references |
Ruiz, R., & Maroto, C. (2005). A comprehensive review and evaluation of permutation flowshop heuristics. European Journal of Operational Research, 165(2), 479-494. doi:10.1016/j.ejor.2004.04.017 |
es_ES |
dc.description.references |
Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. European Journal of Operational Research, 177(3), 2033-2049. doi:10.1016/j.ejor.2005.12.009 |
es_ES |
dc.description.references |
Sörensen, K. (2013). Metaheuristics-the metaphor exposed. International Transactions in Operational Research, 22(1), 3-18. doi:10.1111/itor.12001 |
es_ES |
dc.description.references |
Taillard, E. (1990). Some efficient heuristic methods for the flow shop sequencing problem. European Journal of Operational Research, 47(1), 65-74. doi:10.1016/0377-2217(90)90090-x |
es_ES |
dc.description.references |
Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational Research, 64(2), 278-285. doi:10.1016/0377-2217(93)90182-m |
es_ES |
dc.description.references |
Urlings, T., Ruiz, R., & Stützle, T. (2010). Shifting representation search for hybrid flexible flowline problems. European Journal of Operational Research, 207(2), 1086-1095. doi:10.1016/j.ejor.2010.05.041 |
es_ES |
dc.description.references |
Wang, K., Huang, Y., & Qin, H. (2016). A fuzzy logic-based hybrid estimation of distribution algorithm for distributed permutation flowshop scheduling problems under machine breakdown. Journal of the Operational Research Society, 67(1), 68-82. doi:10.1057/jors.2015.50 |
es_ES |
dc.description.references |
Wang, S., Wang, L., Liu, M., & Xu, Y. (2013). An effective estimation of distribution algorithm for solving the distributed permutation flow-shop scheduling problem. International Journal of Production Economics, 145(1), 387-396. doi:10.1016/j.ijpe.2013.05.004 |
es_ES |
dc.description.references |
Xu, Y., Wang, L., Wang, S., & Liu, M. (2013). An effective hybrid immune algorithm for solving the distributed permutation flow-shop scheduling problem. Engineering Optimization, 46(9), 1269-1283. doi:10.1080/0305215x.2013.827673 |
es_ES |