- -

Limits of flexural wave absorption by open lossy resonators: reflection and transmission problems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Limits of flexural wave absorption by open lossy resonators: reflection and transmission problems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Leng, J. es_ES
dc.contributor.author Gautier, F. es_ES
dc.contributor.author Pelat, A. es_ES
dc.contributor.author Picó Vila, Rubén es_ES
dc.contributor.author Groby, J-P es_ES
dc.contributor.author Romero García, Vicente es_ES
dc.date.accessioned 2021-01-26T04:32:09Z
dc.date.available 2021-01-26T04:32:09Z
dc.date.issued 2019-05-06 es_ES
dc.identifier.issn 1367-2630 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159842
dc.description.abstract [EN] The limits of flexural wave absorption by open lossy resonators are analytically and numerically reported in this work for both the reflection and transmission problems. An experimental validation for the reflection problem is presented. The reflection and transmission of flexural waves in 1D resonant thin beams are analyzed by means of the transfer matrix method. The hypotheses, on which the analytical model relies, are validated by experimental results. The open lossy resonator, consisting of a finite length beam thinner than the main beam, presents both energy leakage due to the aperture of the resonators to the main beam and inherent losses due to the viscoelastic damping. Wave absorption is found to be limited by the balance between the energy leakage and the inherent losses of the open lossy resonator. The perfect compensation of these two elements is known as the critical coupling condition and can be easily tuned by the geometry of the resonator. On the one hand, the scattering in the reflection problem is represented by the reflection coefficient. A single symmetry of the resonance is used to obtain the critical coupling condition. Therefore the perfect absorption can be obtained in this case. On the other hand, the transmission problem is represented by two eigenvalues of the scattering matrix, representing the symmetric and anti-symmetric parts of the full scattering problem. In the geometry analyzed in this work, only one kind of symmetry can be critically coupled, and therefore, the maximal absorption in the transmission problem is limited to 0.5. The results shown in this work pave the way to the design of resonators for efficient flexural wave absorption. es_ES
dc.description.sponsorship The authors thank Mathieu Secail-Geraud and Julien Nicolas for the development of the experimental set-up. The work has been founded by the RFI Le Mans Acoustic (Region Pays de la Loire) within the framework of the Metaplaque project. This article is based upon work from COST action DENORMS CA 15125, supported by COST (European Cooperation in Science and Technology). The work was partly supported by the Spanish Ministry of Economy and Innovation (MINECO) and European Union FEDER through project FIS2015-65998-C2-2 and by project AICO/2016/060 by Conselleria de Educacion, Investigacion, Cultura y Deporte de la Generalitat Valenciana. es_ES
dc.language Inglés es_ES
dc.publisher IOP Publishing es_ES
dc.relation.ispartof NEW JOURNAL OF PHYSICS es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Perfect absorption es_ES
dc.subject Acoustic metamaterials es_ES
dc.subject Locally resonant structures es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Limits of flexural wave absorption by open lossy resonators: reflection and transmission problems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/1367-2630/ab1761 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//CA15125/EU/Designs for Noise Reducing Materials and Structures (DENORMS)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FIS2015-65998-C2-2-P/ES/ONDAS ACUSTICAS EN CRISTALES, MEDIOS ESTRUCTURADOS Y METAMATERIALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2016%2F060/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Leng, J.; Gautier, F.; Pelat, A.; Picó Vila, R.; Groby, J.; Romero García, V. (2019). Limits of flexural wave absorption by open lossy resonators: reflection and transmission problems. NEW JOURNAL OF PHYSICS. 21:1-11. https://doi.org/10.1088/1367-2630/ab1761 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1088/1367-2630/ab1761 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.relation.pasarela S\387717 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Romero-García, V., Theocharis, G., Richoux, O., & Pagneux, V. (2016). Use of complex frequency plane to design broadband and sub-wavelength absorbers. The Journal of the Acoustical Society of America, 139(6), 3395-3403. doi:10.1121/1.4950708 es_ES
dc.description.references Merkel, A., Theocharis, G., Richoux, O., Romero-García, V., & Pagneux, V. (2015). Control of acoustic absorption in one-dimensional scattering by resonant scatterers. Applied Physics Letters, 107(24), 244102. doi:10.1063/1.4938121 es_ES
dc.description.references Groby, J.-P., Pommier, R., & Aurégan, Y. (2016). Use of slow sound to design perfect and broadband passive sound absorbing materials. The Journal of the Acoustical Society of America, 139(4), 1660-1671. doi:10.1121/1.4945101 es_ES
dc.description.references Jiménez, N., Huang, W., Romero-García, V., Pagneux, V., & Groby, J.-P. (2016). Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption. Applied Physics Letters, 109(12), 121902. doi:10.1063/1.4962328 es_ES
dc.description.references Jiménez, N., Romero-García, V., Pagneux, V., & Groby, J.-P. (2017). Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems. Scientific Reports, 7(1). doi:10.1038/s41598-017-13706-4 es_ES
dc.description.references Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., & Zhang, X. (2006). Ultrasonic metamaterials with negative modulus. Nature Materials, 5(6), 452-456. doi:10.1038/nmat1644 es_ES
dc.description.references Liu, Z., Zhang, X., Mao, Y., Zhu, Y. Y., Yang, Z., Chan, C. T., & Sheng, P. (2000). Locally Resonant Sonic Materials. Science, 289(5485), 1734-1736. doi:10.1126/science.289.5485.1734 es_ES
dc.description.references Skelton, E. A., Craster, R. V., Colombi, A., & Colquitt, D. J. (2018). The multi-physics metawedge: graded arrays on fluid-loaded elastic plates and the mechanical analogues of rainbow trapping and mode conversion. New Journal of Physics, 20(5), 053017. doi:10.1088/1367-2630/aabecf es_ES
dc.description.references Wei, P., Croënne, C., Tak Chu, S., & Li, J. (2014). Symmetrical and anti-symmetrical coherent perfect absorption for acoustic waves. Applied Physics Letters, 104(12), 121902. doi:10.1063/1.4869462 es_ES
dc.description.references Duan, Y., Luo, J., Wang, G., Hang, Z. H., Hou, B., Li, J., … Lai, Y. (2015). Theoretical requirements for broadband perfect absorption of acoustic waves by ultra-thin elastic meta-films. Scientific Reports, 5(1). doi:10.1038/srep12139 es_ES
dc.description.references Theocharis, G., Richoux, O., García, V. R., Merkel, A., & Tournat, V. (2014). Limits of slow sound propagation and transparency in lossy, locally resonant periodic structures. New Journal of Physics, 16(9), 093017. doi:10.1088/1367-2630/16/9/093017 es_ES
dc.description.references Colombi, A., Ageeva, V., Smith, R. J., Clare, A., Patel, R., Clark, M., … Craster, R. V. (2017). Enhanced sensing and conversion of ultrasonic Rayleigh waves by elastic metasurfaces. Scientific Reports, 7(1). doi:10.1038/s41598-017-07151-6 es_ES
dc.description.references Pal, R. K., & Ruzzene, M. (2017). Edge waves in plates with resonators: an elastic analogue of the quantum valley Hall effect. New Journal of Physics, 19(2), 025001. doi:10.1088/1367-2630/aa56a2 es_ES
dc.description.references Bliokh, K. Y., Bliokh, Y. P., Freilikher, V., Savel’ev, S., & Nori, F. (2008). Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media. Reviews of Modern Physics, 80(4), 1201-1213. doi:10.1103/revmodphys.80.1201 es_ES
dc.description.references Yariv, A. (2000). Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electronics Letters, 36(4), 321. doi:10.1049/el:20000340 es_ES
dc.description.references Xu, Y., Li, Y., Lee, R. K., & Yariv, A. (2000). Scattering-theory analysis of waveguide-resonator coupling. Physical Review E, 62(5), 7389-7404. doi:10.1103/physreve.62.7389 es_ES
dc.description.references Cai, M., Painter, O., & Vahala, K. J. (2000). Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System. Physical Review Letters, 85(1), 74-77. doi:10.1103/physrevlett.85.74 es_ES
dc.description.references Teng, T.-L., & Hu, N.-K. (2001). Analysis of damping characteristics for viscoelastic laminated beams. Computer Methods in Applied Mechanics and Engineering, 190(29-30), 3881-3892. doi:10.1016/s0045-7825(00)00305-4 es_ES
dc.description.references Brennan, M. J. (1999). CONTROL OF FLEXURAL WAVES ON A BEAM USING A TUNABLE VIBRATION NEUTRALISER. Journal of Sound and Vibration, 222(3), 389-407. doi:10.1006/jsvi.1998.2031 es_ES
dc.description.references El-Khatib, H. M., Mace, B. R., & Brennan, M. J. (2005). Suppression of bending waves in a beam using a tuned vibration absorber. Journal of Sound and Vibration, 288(4-5), 1157-1175. doi:10.1016/j.jsv.2005.01.024 es_ES
dc.description.references Mace, B. R. (1984). Wave reflection and transmission in beams. Journal of Sound and Vibration, 97(2), 237-246. doi:10.1016/0022-460x(84)90320-1 es_ES
dc.description.references Jiménez, N., Romero-García, V., Pagneux, V., & Groby, J.-P. (2017). Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound. Physical Review B, 95(1). doi:10.1103/physrevb.95.014205 es_ES
dc.description.references Chong, Y. D., Ge, L., Cao, H., & Stone, A. D. (2010). Coherent Perfect Absorbers: Time-Reversed Lasers. Physical Review Letters, 105(5). doi:10.1103/physrevlett.105.053901 es_ES
dc.description.references Yang, M., Meng, C., Fu, C., Li, Y., Yang, Z., & Sheng, P. (2015). Subwavelength total acoustic absorption with degenerate resonators. Applied Physics Letters, 107(10), 104104. doi:10.1063/1.4930944 es_ES
dc.description.references Denis, V., Gautier, F., Pelat, A., & Poittevin, J. (2015). Measurement and modelling of the reflection coefficient of an Acoustic Black Hole termination. Journal of Sound and Vibration, 349, 67-79. doi:10.1016/j.jsv.2015.03.043 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem