- -

Modelling the propagation of electromagnetic waves across complex metamaterials in closed structures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modelling the propagation of electromagnetic waves across complex metamaterials in closed structures

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Balbastre Tejedor, Juan Vicente es_ES
dc.contributor.author Nuño Fernández, Luis es_ES
dc.date.accessioned 2021-01-26T04:32:17Z
dc.date.available 2021-01-26T04:32:17Z
dc.date.issued 2019-05-15 es_ES
dc.identifier.issn 0377-0427 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159847
dc.description.abstract [EN] Metamaterials are currently one of the most popular fields in microwave technology because their particular electromagnetic properties lead to a plenty of very relevant applications, both military and civilian. Additionally, the analysis and design of microwave components based on this kind of materials is one of the more challenging problems found by the applied electromagnetism community due to the complexity introduced in the mathematical formulation by their constitutive relationships. The most general case of metamaterial is the bi-anisotropic one, where both the electric field and the electric induction simultaneously depend on the magnetic field and the magnetic induction. In this paper, we present a new and powerful Finite Element Method scheme valid for the analysis of the most general waveguides, filled with lossy bi-anisotropic linear materials. Edge elements have been used in order to prevent the appearance of spurious solutions and the final eigensystems are very sparse, thus allowing a great memory and computing time saving. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Computational and Applied Mathematics es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Bi-anisotropic metamaterials es_ES
dc.subject Microwave engineering es_ES
dc.subject Finite Element Method es_ES
dc.subject Weighted residuals method es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Modelling the propagation of electromagnetic waves across complex metamaterials in closed structures es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cam.2018.11.004 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Balbastre Tejedor, JV.; Nuño Fernández, L. (2019). Modelling the propagation of electromagnetic waves across complex metamaterials in closed structures. Journal of Computational and Applied Mathematics. (352):40-49. https://doi.org/10.1016/j.cam.2018.11.004 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cam.2018.11.004 es_ES
dc.description.upvformatpinicio 40 es_ES
dc.description.upvformatpfin 49 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.issue 352 es_ES
dc.relation.pasarela S\374765 es_ES
dc.description.references Dillon, M. B., Gibson, A. A. P., & Webb, J. P. (1993). Cut-off and phase constants of partially filled axially magnetized, gyromagnetic waveguides using finite elements. IEEE Transactions on Microwave Theory and Techniques, 41(5), 803-808. doi:10.1109/22.234514 es_ES
dc.description.references Anderson, B. C., & Cendes, Z. J. (1995). Solution of ferrite loaded waveguide using vector finite elements. IEEE Transactions on Magnetics, 31(3), 1578-1581. doi:10.1109/20.376333 es_ES
dc.description.references Lezhu Zhou, & Davis, L. E. (1996). Finite-element method with edge elements for waveguides loaded with ferrite magnetized in arbitrary direction. IEEE Transactions on Microwave Theory and Techniques, 44(6), 809-815. doi:10.1109/22.506438 es_ES
dc.description.references Yinchao Chen, & Beker, B. (1994). Application of MoL to shielded microstrip lines with bi-anisotropic biaxial substrates and cover layers. IEEE Transactions on Magnetics, 30(5), 3212-3215. doi:10.1109/20.312621 es_ES
dc.description.references Polycarpou, A. C., Lyons, M. R., & Balanis, C. A. (1996). Finite element analysis of MMIC waveguide structures with anisotropic substrates. IEEE Transactions on Microwave Theory and Techniques, 44(10), 1650-1663. doi:10.1109/22.538956 es_ES
dc.description.references Lu, Y., & Fernandez, F. A. (1993). An efficient finite element solution of inhomogeneous anisotropic and lossy dielectric waveguides. IEEE Transactions on Microwave Theory and Techniques, 41(6), 1215-1223. doi:10.1109/22.238548 es_ES
dc.description.references Lee, J.-F. (1994). Finite element analysis of lossy dielectric waveguides. IEEE Transactions on Microwave Theory and Techniques, 42(6), 1025-1031. doi:10.1109/22.293572 es_ES
dc.description.references Nuno, L., Balbastre, J. V., & Castane, H. (1997). Analysis of general lossy inhomogeneous and anisotropic waveguides by the finite-element method (FEM) using edge elements. IEEE Transactions on Microwave Theory and Techniques, 45(3), 446-449. doi:10.1109/22.563347 es_ES
dc.description.references Pan, G., & Tan, J. (1997). General edge element approach to lossy and dispersive structures in anisotropic media. IEE Proceedings - Microwaves, Antennas and Propagation, 144(2), 81. doi:10.1049/ip-map:19970507 es_ES
dc.description.references Svedin, J. A. M. (1990). Propagation analysis of chirowaveguides using the finite-element method. IEEE Transactions on Microwave Theory and Techniques, 38(10), 1488-1496. doi:10.1109/22.58690 es_ES
dc.description.references Shen, Z. (1993). The theory of chiroferrite waveguides. Microwave and Optical Technology Letters, 6(7), 397-401. doi:10.1002/mop.4650060704 es_ES
dc.description.references Yin Wenyan, Wang Wenbing, & Li Pao. (1994). Guided electromagnetic waves in gyrotropic chirowaveguides. IEEE Transactions on Microwave Theory and Techniques, 42(11), 2156-2163. doi:10.1109/22.330132 es_ES
dc.description.references Yansheng Xu, & Bosisio, R. G. (1995). An efficient method for study of general bi-anisotropic waveguides. IEEE Transactions on Microwave Theory and Techniques, 43(4), 873-879. doi:10.1109/22.375237 es_ES
dc.description.references Jakoby, B., & De Zutter, D. (1996). Analysis of guided waves in inhomogeneous bianisotropic cylindrical waveguides. IEEE Transactions on Microwave Theory and Techniques, 44(2), 297-310. doi:10.1109/22.481580 es_ES
dc.description.references Graglia, R. D., Sarto, M. S., & Uslenghi, P. L. E. (1996). TE and TM modes in cylindrical metallic structures filled with bianisotropic material. IEEE Transactions on Microwave Theory and Techniques, 44(8), 1470-1477. doi:10.1109/22.536030 es_ES
dc.description.references Valor, L., & Zapata, J. (1996). An efficient finite element formulation to analyze waveguides with lossy inhomogeneous bi-anisotropic materials. IEEE Transactions on Microwave Theory and Techniques, 44(2), 291-296. doi:10.1109/22.481579 es_ES
dc.description.references Lee, J. F., Sun, D. K., & Cendes, Z. J. (1991). Tangential vector finite elements for electromagnetic field computation. IEEE Transactions on Magnetics, 27(5), 4032-4035. doi:10.1109/20.104986 es_ES
dc.description.references Hernández, V., Román, J. E., & Vidal, V. (2003). SLEPc: Scalable Library for Eigenvalue Problem Computations. High Performance Computing for Computational Science — VECPAR 2002, 377-391. doi:10.1007/3-540-36569-9_25 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem