- -

Advantages offered by the double magnetic loops versus the conventional single ones

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Advantages offered by the double magnetic loops versus the conventional single ones

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mocholí-Belenguer, Ferran es_ES
dc.contributor.author Mocholí Salcedo, Antonio es_ES
dc.contributor.author Guill Ibáñez, Antonio es_ES
dc.contributor.author MILIAN SANCHEZ, VICTOR es_ES
dc.date.accessioned 2021-01-26T04:32:39Z
dc.date.available 2021-01-26T04:32:39Z
dc.date.issued 2019-02-12 es_ES
dc.identifier.issn 1932-6203 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159860
dc.description.abstract [EN] Due to their simplicity and operating mode, magnetic loops are one of the most used traffic sensors in Intelligent Transportation Systems (ITS). However, at this moment, their potential is not being fully exploited, as neither the speed nor the length of the vehicles can be surely ascertained with the use of a single magnetic loop. In this way, nowadays the vast majority of them are only being used to measure traffic flow and count vehicles on urban and interurban roads. This is the reason why we presented in a previous paper the double magnetic loop, capable of improving the features and functionalities of the conventional single loop without increasing the cost or introducing additional complexity. In that paper, it was introduced their design and peculiarities, how to calculate their magnetic field and three different methods to calculate their inductance. Therefore, with the purpose of improving the existing infrastructure and providing it with greater potential and reliability, this paper will focus on justifying and demonstrating the advantages offered by these double loops versus the conventional ones. This will involve analyzing the magnetic profiles generated by the passage of vehicles over double loops and comparing them with those already known. Moreover, it will be shown how the vehicle speed, the traffic direction and many other data can be obtained more easily and with less margin of error by using these new inductance signatures. es_ES
dc.description.sponsorship This research has been funded by the Universitat Politecnica de Valencia through its internal project 'Equipos de deteccion, regulacion e informacion en el sector de los sistemas inteligentes de transporte (ITS). Nuevos modelos y ensayos de compatibilidad y verificacion de funcionamiento', which has been carried out at the ITACA Institute es_ES
dc.language Inglés es_ES
dc.publisher Public Library of Science es_ES
dc.relation.ispartof PLoS ONE es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Tráfico es_ES
dc.subject Espiras Magnéticas es_ES
dc.subject Perfil Magnético es_ES
dc.subject Parámetros Viales es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Advantages offered by the double magnetic loops versus the conventional single ones es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.pone.0211626 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//20170764/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Mocholí-Belenguer, F.; Mocholí Salcedo, A.; Guill Ibáñez, A.; Milian Sanchez, V. (2019). Advantages offered by the double magnetic loops versus the conventional single ones. PLoS ONE. 14(2):1-24. https://doi.org/10.1371/journal.pone.0211626 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1371/journal.pone.0211626 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 24 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 2 es_ES
dc.identifier.pmid 30753200 es_ES
dc.identifier.pmcid PMC6372151 es_ES
dc.relation.pasarela S\377973 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references He, Y., Du, Y., Sun, L., & Wang, Y. (2014). Improved waveform-feature-based vehicle classification using a single-point magnetic sensor. Journal of Advanced Transportation, 49(5), 663-682. doi:10.1002/atr.1299 es_ES
dc.description.references Gajda J, Sroka R, Stencel M, Wajda A, and Zeglen T. A vehicle classification based on inductive loop detectors. Proceedings of IEEE Instrumentation Measurement Technology Conference, Budapest, Hungary, May 2001; pp. 460–464. es_ES
dc.description.references Liu, F., Zeng, Z., & Jiang, R. (2017). A video-based real-time adaptive vehicle-counting system for urban roads. PLOS ONE, 12(11), e0186098. doi:10.1371/journal.pone.0186098 es_ES
dc.description.references Hellinga, B. R. (2002). Improving Freeway Speed Estimates from Single-Loop Detectors. Journal of Transportation Engineering, 128(1), 58-67. doi:10.1061/(asce)0733-947x(2002)128:1(58) es_ES
dc.description.references Tok A, Hernandez SV, and Ritchie SG. Accurate individual vehicle speeds from single inductive loop signatures. Proceedings of 88th Annual Meeting of the Transportation Research Board, National Research Council, Washington, D.C, USA, 2009; paper 09–3512. [Online]. es_ES
dc.description.references Hilliard SR. Vehicle speed estimation using inductive vehicle detection systems. United States Patent 6999886, Feb. 2003. es_ES
dc.description.references Wu, C., Yu, D., Doherty, A., Zhang, T., Kust, L., & Luo, G. (2017). An investigation of perceived vehicle speed from a driver’s perspective. PLOS ONE, 12(10), e0185347. doi:10.1371/journal.pone.0185347 es_ES
dc.description.references Wahlstrom, N., Hostettler, R., Gustafsson, F., & Birk, W. (2014). Classification of Driving Direction in Traffic Surveillance Using Magnetometers. IEEE Transactions on Intelligent Transportation Systems, 15(4), 1405-1418. doi:10.1109/tits.2014.2298199 es_ES
dc.description.references Meta, S., & Cinsdikici, M. G. (2010). Vehicle-Classification Algorithm Based on Component Analysis for Single-Loop Inductive Detector. IEEE Transactions on Vehicular Technology, 59(6), 2795-2805. doi:10.1109/tvt.2010.2049756 es_ES
dc.description.references Wang, H., Li, Z., Hurwitz, D., & Shi, J. (2013). Parametric modeling of the heteroscedastic traffic speed variance from loop detector data. Journal of Advanced Transportation, 49(2), 279-296. doi:10.1002/atr.1258 es_ES
dc.description.references Bhaskar L, Sahai A, Sinha D, Varshney G, and Jain T. Intelligent traffic light controller using inductive loops for vehicle detection. Proceedings of the 1st International Conference on Next Generation Computing Technologies, NGCT 2015; pp. 518–522, India, September 2015. es_ES
dc.description.references Ki, Y.-K., & Baik, D.-K. (2006). Vehicle-Classification Algorithm for Single-Loop Detectors Using Neural Networks. IEEE Transactions on Vehicular Technology, 55(6), 1704-1711. doi:10.1109/tvt.2006.883726 es_ES
dc.description.references Lamas-Seco, J., Castro, P., Dapena, A., & Vazquez-Araujo, F. (2015). Vehicle Classification Using the Discrete Fourier Transform with Traffic Inductive Sensors. Sensors, 15(10), 27201-27214. doi:10.3390/s151027201 es_ES
dc.description.references Pursula M and Kosonen I. Microprocessor and PC-based vehicle classification equipments using induction loops. Proceedings of the IEEE Second International Conference on Road Traffic Monitoring and Control; pp. 24–28, 1989. es_ES
dc.description.references Wang, Y., & Nihan, N. L. (2003). Can Single-Loop Detectors Do the Work of Dual-Loop Detectors? Journal of Transportation Engineering, 129(2), 169-176. doi:10.1061/(asce)0733-947x(2003)129:2(169) es_ES
dc.description.references Ki, Y.-K., & Baik, D.-K. (2006). Model for Accurate Speed Measurement Using Double-Loop Detectors. IEEE Transactions on Vehicular Technology, 55(4), 1094-1101. doi:10.1109/tvt.2006.877462 es_ES
dc.description.references Coifman, B., Dhoorjaty, S., & Lee, Z.-H. (2003). Estimating median velocity instead of mean velocity at single loop detectors. Transportation Research Part C: Emerging Technologies, 11(3-4), 211-222. doi:10.1016/s0968-090x(03)00025-1 es_ES
dc.description.references Dailey, D. J. (1999). A statistical algorithm for estimating speed from single loop volume and occupancy measurements. Transportation Research Part B: Methodological, 33(5), 313-322. doi:10.1016/s0191-2615(98)00037-x es_ES
dc.description.references Dailey, D. J. (1993). Travel-time estimation using cross-correlation techniques. Transportation Research Part B: Methodological, 27(2), 97-107. doi:10.1016/0191-2615(93)90002-r es_ES
dc.description.references Sun, C., & Ritchie, S. G. (1999). Individual Vehicle Speed Estimation Using Single Loop Inductive Waveforms. Journal of Transportation Engineering, 125(6), 531-538. doi:10.1061/(asce)0733-947x(1999)125:6(531) es_ES
dc.description.references Gajda, J., Piwowar, P., Sroka, R., Stencel, M., & Zeglen, T. (2012). Application of inductive loops as wheel detectors. Transportation Research Part C: Emerging Technologies, 21(1), 57-66. doi:10.1016/j.trc.2011.08.010 es_ES
dc.description.references Marszalek Z, Sroka R, Zeglen T. Inductive loop for vehicle axle detection from first concepts to the system based on changes in the sensor impedance components. Proceedings of 20th international conference on methods and models in automation and robotics, 24–27, August 2015, Miedzyzdroje, Poland; pp 765–769. es_ES
dc.description.references Arroyo Núñez JH, Mocholí Salcedo A, Barrales Guadarrama R, and Arroyo Nuñez A. Communication between magnetic loops. Proceedings of 16th World Road Meeting, Lisbon, Portugal, May 2010. es_ES
dc.description.references Gajda J and Burnos P. Identification of the spatial impulse response of inductive loop detectors. IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, 2015; pp. 1997–2002. es_ES
dc.description.references Mocholí Belenguer, F., Mocholí Salcedo, A., Milián Sánchez, V., & Arroyo Núñez, J. H. (2018). Double Magnetic Loop and Methods for Calculating Its Inductance. Journal of Advanced Transportation, 2018, 1-15. doi:10.1155/2018/6517137 es_ES
dc.description.references Burnos, P., Gajda, J., Marszałek, Z., Piwowar, P., Sroka, R., Stencel, M., & Żegleń, T. (2011). Road Traffic Parameters Measuring System with Variable Structure. Metrology and Measurement Systems, 18(4), 659-666. doi:10.2478/v10178-011-0062-8 es_ES
dc.description.references Klein LA, Gibson DRP, and Mills MK. Traffic Detector Handbook. FHWAHRT-06-108. Federal Highway Administration, U.S. Department of Transportation 2006. es_ES
dc.description.references Mills MK. Inductive loop system equivalent circuit model. Proceedings of 39th Vehicular Technology Conference, May 1989; pp. 689–700. es_ES
dc.description.references Mills MK. Self-Inductance Formulas for Multi- Turn Rectangular Loops Used with Vehicle Detectors. 33rd IEEE VTG Conference Record, May 1983; pp. 64–73. es_ES
dc.description.references Mocholi-Salcedo, A., Arroyo-Nunez, J. H., Milian-Sanchez, V. M., Palomo-Anaya, M. J., & Arroyo-Nunez, A. (2017). Magnetic Field Generated by the Loops Used in Traffic Control Systems. IEEE Transactions on Intelligent Transportation Systems, 18(8), 2126-2136. doi:10.1109/tits.2016.2632972 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem