Mostrar el registro sencillo del ítem
dc.contributor.author | Mocholí-Belenguer, Ferran | es_ES |
dc.contributor.author | Mocholí Salcedo, Antonio | es_ES |
dc.contributor.author | Guill Ibáñez, Antonio | es_ES |
dc.contributor.author | MILIAN SANCHEZ, VICTOR | es_ES |
dc.date.accessioned | 2021-01-26T04:32:39Z | |
dc.date.available | 2021-01-26T04:32:39Z | |
dc.date.issued | 2019-02-12 | es_ES |
dc.identifier.issn | 1932-6203 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159860 | |
dc.description.abstract | [EN] Due to their simplicity and operating mode, magnetic loops are one of the most used traffic sensors in Intelligent Transportation Systems (ITS). However, at this moment, their potential is not being fully exploited, as neither the speed nor the length of the vehicles can be surely ascertained with the use of a single magnetic loop. In this way, nowadays the vast majority of them are only being used to measure traffic flow and count vehicles on urban and interurban roads. This is the reason why we presented in a previous paper the double magnetic loop, capable of improving the features and functionalities of the conventional single loop without increasing the cost or introducing additional complexity. In that paper, it was introduced their design and peculiarities, how to calculate their magnetic field and three different methods to calculate their inductance. Therefore, with the purpose of improving the existing infrastructure and providing it with greater potential and reliability, this paper will focus on justifying and demonstrating the advantages offered by these double loops versus the conventional ones. This will involve analyzing the magnetic profiles generated by the passage of vehicles over double loops and comparing them with those already known. Moreover, it will be shown how the vehicle speed, the traffic direction and many other data can be obtained more easily and with less margin of error by using these new inductance signatures. | es_ES |
dc.description.sponsorship | This research has been funded by the Universitat Politecnica de Valencia through its internal project 'Equipos de deteccion, regulacion e informacion en el sector de los sistemas inteligentes de transporte (ITS). Nuevos modelos y ensayos de compatibilidad y verificacion de funcionamiento', which has been carried out at the ITACA Institute | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Public Library of Science | es_ES |
dc.relation.ispartof | PLoS ONE | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Tráfico | es_ES |
dc.subject | Espiras Magnéticas | es_ES |
dc.subject | Perfil Magnético | es_ES |
dc.subject | Parámetros Viales | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Advantages offered by the double magnetic loops versus the conventional single ones | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1371/journal.pone.0211626 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//20170764/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Mocholí-Belenguer, F.; Mocholí Salcedo, A.; Guill Ibáñez, A.; Milian Sanchez, V. (2019). Advantages offered by the double magnetic loops versus the conventional single ones. PLoS ONE. 14(2):1-24. https://doi.org/10.1371/journal.pone.0211626 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1371/journal.pone.0211626 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 24 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 14 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.pmid | 30753200 | es_ES |
dc.identifier.pmcid | PMC6372151 | es_ES |
dc.relation.pasarela | S\377973 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | He, Y., Du, Y., Sun, L., & Wang, Y. (2014). Improved waveform-feature-based vehicle classification using a single-point magnetic sensor. Journal of Advanced Transportation, 49(5), 663-682. doi:10.1002/atr.1299 | es_ES |
dc.description.references | Gajda J, Sroka R, Stencel M, Wajda A, and Zeglen T. A vehicle classification based on inductive loop detectors. Proceedings of IEEE Instrumentation Measurement Technology Conference, Budapest, Hungary, May 2001; pp. 460–464. | es_ES |
dc.description.references | Liu, F., Zeng, Z., & Jiang, R. (2017). A video-based real-time adaptive vehicle-counting system for urban roads. PLOS ONE, 12(11), e0186098. doi:10.1371/journal.pone.0186098 | es_ES |
dc.description.references | Hellinga, B. R. (2002). Improving Freeway Speed Estimates from Single-Loop Detectors. Journal of Transportation Engineering, 128(1), 58-67. doi:10.1061/(asce)0733-947x(2002)128:1(58) | es_ES |
dc.description.references | Tok A, Hernandez SV, and Ritchie SG. Accurate individual vehicle speeds from single inductive loop signatures. Proceedings of 88th Annual Meeting of the Transportation Research Board, National Research Council, Washington, D.C, USA, 2009; paper 09–3512. [Online]. | es_ES |
dc.description.references | Hilliard SR. Vehicle speed estimation using inductive vehicle detection systems. United States Patent 6999886, Feb. 2003. | es_ES |
dc.description.references | Wu, C., Yu, D., Doherty, A., Zhang, T., Kust, L., & Luo, G. (2017). An investigation of perceived vehicle speed from a driver’s perspective. PLOS ONE, 12(10), e0185347. doi:10.1371/journal.pone.0185347 | es_ES |
dc.description.references | Wahlstrom, N., Hostettler, R., Gustafsson, F., & Birk, W. (2014). Classification of Driving Direction in Traffic Surveillance Using Magnetometers. IEEE Transactions on Intelligent Transportation Systems, 15(4), 1405-1418. doi:10.1109/tits.2014.2298199 | es_ES |
dc.description.references | Meta, S., & Cinsdikici, M. G. (2010). Vehicle-Classification Algorithm Based on Component Analysis for Single-Loop Inductive Detector. IEEE Transactions on Vehicular Technology, 59(6), 2795-2805. doi:10.1109/tvt.2010.2049756 | es_ES |
dc.description.references | Wang, H., Li, Z., Hurwitz, D., & Shi, J. (2013). Parametric modeling of the heteroscedastic traffic speed variance from loop detector data. Journal of Advanced Transportation, 49(2), 279-296. doi:10.1002/atr.1258 | es_ES |
dc.description.references | Bhaskar L, Sahai A, Sinha D, Varshney G, and Jain T. Intelligent traffic light controller using inductive loops for vehicle detection. Proceedings of the 1st International Conference on Next Generation Computing Technologies, NGCT 2015; pp. 518–522, India, September 2015. | es_ES |
dc.description.references | Ki, Y.-K., & Baik, D.-K. (2006). Vehicle-Classification Algorithm for Single-Loop Detectors Using Neural Networks. IEEE Transactions on Vehicular Technology, 55(6), 1704-1711. doi:10.1109/tvt.2006.883726 | es_ES |
dc.description.references | Lamas-Seco, J., Castro, P., Dapena, A., & Vazquez-Araujo, F. (2015). Vehicle Classification Using the Discrete Fourier Transform with Traffic Inductive Sensors. Sensors, 15(10), 27201-27214. doi:10.3390/s151027201 | es_ES |
dc.description.references | Pursula M and Kosonen I. Microprocessor and PC-based vehicle classification equipments using induction loops. Proceedings of the IEEE Second International Conference on Road Traffic Monitoring and Control; pp. 24–28, 1989. | es_ES |
dc.description.references | Wang, Y., & Nihan, N. L. (2003). Can Single-Loop Detectors Do the Work of Dual-Loop Detectors? Journal of Transportation Engineering, 129(2), 169-176. doi:10.1061/(asce)0733-947x(2003)129:2(169) | es_ES |
dc.description.references | Ki, Y.-K., & Baik, D.-K. (2006). Model for Accurate Speed Measurement Using Double-Loop Detectors. IEEE Transactions on Vehicular Technology, 55(4), 1094-1101. doi:10.1109/tvt.2006.877462 | es_ES |
dc.description.references | Coifman, B., Dhoorjaty, S., & Lee, Z.-H. (2003). Estimating median velocity instead of mean velocity at single loop detectors. Transportation Research Part C: Emerging Technologies, 11(3-4), 211-222. doi:10.1016/s0968-090x(03)00025-1 | es_ES |
dc.description.references | Dailey, D. J. (1999). A statistical algorithm for estimating speed from single loop volume and occupancy measurements. Transportation Research Part B: Methodological, 33(5), 313-322. doi:10.1016/s0191-2615(98)00037-x | es_ES |
dc.description.references | Dailey, D. J. (1993). Travel-time estimation using cross-correlation techniques. Transportation Research Part B: Methodological, 27(2), 97-107. doi:10.1016/0191-2615(93)90002-r | es_ES |
dc.description.references | Sun, C., & Ritchie, S. G. (1999). Individual Vehicle Speed Estimation Using Single Loop Inductive Waveforms. Journal of Transportation Engineering, 125(6), 531-538. doi:10.1061/(asce)0733-947x(1999)125:6(531) | es_ES |
dc.description.references | Gajda, J., Piwowar, P., Sroka, R., Stencel, M., & Zeglen, T. (2012). Application of inductive loops as wheel detectors. Transportation Research Part C: Emerging Technologies, 21(1), 57-66. doi:10.1016/j.trc.2011.08.010 | es_ES |
dc.description.references | Marszalek Z, Sroka R, Zeglen T. Inductive loop for vehicle axle detection from first concepts to the system based on changes in the sensor impedance components. Proceedings of 20th international conference on methods and models in automation and robotics, 24–27, August 2015, Miedzyzdroje, Poland; pp 765–769. | es_ES |
dc.description.references | Arroyo Núñez JH, Mocholí Salcedo A, Barrales Guadarrama R, and Arroyo Nuñez A. Communication between magnetic loops. Proceedings of 16th World Road Meeting, Lisbon, Portugal, May 2010. | es_ES |
dc.description.references | Gajda J and Burnos P. Identification of the spatial impulse response of inductive loop detectors. IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, 2015; pp. 1997–2002. | es_ES |
dc.description.references | Mocholí Belenguer, F., Mocholí Salcedo, A., Milián Sánchez, V., & Arroyo Núñez, J. H. (2018). Double Magnetic Loop and Methods for Calculating Its Inductance. Journal of Advanced Transportation, 2018, 1-15. doi:10.1155/2018/6517137 | es_ES |
dc.description.references | Burnos, P., Gajda, J., Marszałek, Z., Piwowar, P., Sroka, R., Stencel, M., & Żegleń, T. (2011). Road Traffic Parameters Measuring System with Variable Structure. Metrology and Measurement Systems, 18(4), 659-666. doi:10.2478/v10178-011-0062-8 | es_ES |
dc.description.references | Klein LA, Gibson DRP, and Mills MK. Traffic Detector Handbook. FHWAHRT-06-108. Federal Highway Administration, U.S. Department of Transportation 2006. | es_ES |
dc.description.references | Mills MK. Inductive loop system equivalent circuit model. Proceedings of 39th Vehicular Technology Conference, May 1989; pp. 689–700. | es_ES |
dc.description.references | Mills MK. Self-Inductance Formulas for Multi- Turn Rectangular Loops Used with Vehicle Detectors. 33rd IEEE VTG Conference Record, May 1983; pp. 64–73. | es_ES |
dc.description.references | Mocholi-Salcedo, A., Arroyo-Nunez, J. H., Milian-Sanchez, V. M., Palomo-Anaya, M. J., & Arroyo-Nunez, A. (2017). Magnetic Field Generated by the Loops Used in Traffic Control Systems. IEEE Transactions on Intelligent Transportation Systems, 18(8), 2126-2136. doi:10.1109/tits.2016.2632972 | es_ES |