- -

Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fuertes-Miquel, Vicente S. es_ES
dc.contributor.author Coronado-Hernández, Oscar E. es_ES
dc.contributor.author Mora-Melia, Daniel es_ES
dc.contributor.author Iglesias Rey, Pedro Luís es_ES
dc.date.accessioned 2021-01-27T04:32:20Z
dc.date.available 2021-01-27T04:32:20Z
dc.date.issued 2019-04-21 es_ES
dc.identifier.issn 1573-062X es_ES
dc.identifier.uri http://hdl.handle.net/10251/159981
dc.description.abstract [EN] Filling and emptying processes are common maneuvers while operating, controlling and managing water pipeline systems. Currently, these operations are executed following recommendations from technical manuals and pipe manufacturers; however, these recommendations have a lack of understanding about the behavior of these processes. The application of mathematical models considering transient flows with entrapped air pockets is necessary because a rapid filling operation can cause pressure surges due to air pocket compressions, while an uncontrolled emptying operation can generate troughs of sub-atmospheric pressure caused by air pocket expansion. Depending on pipe and installation conditions, either situation can produce a rupture of pipe systems. Recently, reliable mathematical models have been developed by different researchers. This paper reviews and compares various mathematical models to simulate these processes. Water columns can be analyzed using a rigid water column model, an elastic water model, or 2D/3D CFD models; air-water interfaces using a piston-flow model or more complex models; air pockets through a polytropic model; and air valves using an isentropic nozzle flow or similar approaches. This work can be used as a starting point for planning filling and emptying operations in pressurized pipelines. Uncertainties of mathematical models of two-phases flow concerning to a non-variable friction factor, a polytropic coefficient, an air pocket sizes and an air valve behavior are identified. es_ES
dc.description.sponsorship This work was supported by the Program Fondecyt Regular (Chile) [Project 1180660]; Fundacion Centro de Estudios Intedisciplinarios Basicos y Aplicados, CEIBA (Colombia). es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Urban Water Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Air-water es_ES
dc.subject Emptying es_ES
dc.subject Filling es_ES
dc.subject Transient flow es_ES
dc.subject Water distribution system es_ES
dc.subject.classification MECANICA DE FLUIDOS es_ES
dc.title Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/1573062X.2019.1669188 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FONDECYT//1180660/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Fuertes-Miquel, VS.; Coronado-Hernández, OE.; Mora-Melia, D.; Iglesias Rey, PL. (2019). Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review. Urban Water Journal. 16(4):299-311. https://doi.org/10.1080/1573062X.2019.1669188 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/1573062X.2019.1669188 es_ES
dc.description.upvformatpinicio 299 es_ES
dc.description.upvformatpfin 311 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\410087 es_ES
dc.contributor.funder Fondo Nacional de Desarrollo Científico y Tecnológico, Chile es_ES
dc.description.references Abreu, J., Cabrera, E., Izquierdo, J., & García-Serra, J. (1999). Flow Modeling in Pressurized Systems Revisited. Journal of Hydraulic Engineering, 125(11), 1154-1169. doi:10.1061/(asce)0733-9429(1999)125:11(1154) es_ES
dc.description.references Apollonio, C., Balacco, G., Fontana, N., Giugni, M., Marini, G., & Piccinni, A. (2016). Hydraulic Transients Caused by Air Expulsion During Rapid Filling of Undulating Pipelines. Water, 8(1), 25. doi:10.3390/w8010025 es_ES
dc.description.references Balacco, G., Apollonio, C., & Piccinni, A. F. (2015). Experimental analysis of air valve behaviour during hydraulic transients. Journal of Applied Water Engineering and Research, 3(1), 3-11. doi:10.1080/23249676.2015.1032374 es_ES
dc.description.references Beecham, S., & Lucke, T. (2013). Air water flows in building drainage systems. Urban Water Journal, 12(6), 455-467. doi:10.1080/1573062x.2013.820335 es_ES
dc.description.references Bergant, A., Simpson, A. R., & Tijsseling, A. S. (2006). Water hammer with column separation: A historical review. Journal of Fluids and Structures, 22(2), 135-171. doi:10.1016/j.jfluidstructs.2005.08.008 es_ES
dc.description.references Besharat, M., Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Viseu, M. T., & Ramos, H. M. (2018). Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket. Urban Water Journal, 15(8), 769-779. doi:10.1080/1573062x.2018.1540711 es_ES
dc.description.references Bousso, S., Daynou, M., & Fuamba, M. (2013). Numerical Modeling of Mixed Flows in Storm Water Systems: Critical Review of Literature. Journal of Hydraulic Engineering, 139(4), 385-396. doi:10.1061/(asce)hy.1943-7900.0000680 es_ES
dc.description.references Cabrera, E., Abreu, J., Pérez, R., & Vela, A. (1992). Influence of Liquid Length Variation in Hydraulic Transients. Journal of Hydraulic Engineering, 118(12), 1639-1650. doi:10.1061/(asce)0733-9429(1992)118:12(1639) es_ES
dc.description.references Carlos, M., Arregui, F. J., Cabrera, E., & Palau, C. V. (2011). Understanding Air Release through Air Valves. Journal of Hydraulic Engineering, 137(4), 461-469. doi:10.1061/(asce)hy.1943-7900.0000324 es_ES
dc.description.references Chaudhry, M. H. (2014). Applied Hydraulic Transients. doi:10.1007/978-1-4614-8538-4 es_ES
dc.description.references Hanif Chaudhry, M., & Prashanth Reddy, H. (2011). Mathematical Modeling of Lake Tap Flows. Journal of Hydraulic Engineering, 137(5), 611-614. doi:10.1061/(asce)hy.1943-7900.0000339 es_ES
dc.description.references Coronado-Hernández, O. E. 2019. “Transient Phenemona during the Emptying Process of Water in Pressurized Pipelines.” PhD diss., Spain: Department of Hydraulic Engineering, Polytechnic University of Valencia. es_ES
dc.description.references Coronado-Hernández, O., Fuertes-Miquel, V., Besharat, M., & Ramos, H. (2017). Experimental and Numerical Analysis of a Water Emptying Pipeline Using Different Air Valves. Water, 9(2), 98. doi:10.3390/w9020098 es_ES
dc.description.references Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Besharat, M., & Ramos, H. M. (2018). Subatmospheric pressure in a water draining pipeline with an air pocket. Urban Water Journal, 15(4), 346-352. doi:10.1080/1573062x.2018.1475578 es_ES
dc.description.references Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Iglesias-Rey, P. L., & Martínez-Solano, F. J. (2018). Rigid Water Column Model for Simulating the Emptying Process in a Pipeline Using Pressurized Air. Journal of Hydraulic Engineering, 144(4), 06018004. doi:10.1061/(asce)hy.1943-7900.0001446 es_ES
dc.description.references Covas, D., Stoianov, I., Ramos, H., Graham, N., Maksimović, Č., & Butler, D. (2004). Water hammer in pressurized polyethylene pipes: conceptual model and experimental analysis. Urban Water Journal, 1(2), 177-197. doi:10.1080/15730620412331289977 es_ES
dc.description.references Cunge, J. A., & Wegner, M. (1964). Intégration numérique des équations d’écoulement de barré de Saint-Venant par un schéma implicite de différences finies. La Houille Blanche, 50(1), 33-39. doi:10.1051/lhb/1964002 es_ES
dc.description.references Fontana, N., Galdiero, E., & Giugni, M. (2016). Pressure surges caused by air release in water pipelines. Journal of Hydraulic Research, 54(4), 461-472. doi:10.1080/00221686.2016.1168324 es_ES
dc.description.references Fuertes-Miquel, V. S. 2001. “Hydraulic Transients with Entrapped Air Pockets.” PhD diss., Department of Hydraulic Engineering, Polytechnic University of Valencia, Spain. es_ES
dc.description.references Fuertes-Miquel, V. S., Coronado-Hernández, O. E., Iglesias-Rey, P. L., & Mora-Meliá, D. (2018). Transient phenomena during the emptying process of a single pipe with water–air interaction. Journal of Hydraulic Research, 57(3), 318-326. doi:10.1080/00221686.2018.1492465 es_ES
dc.description.references Fuertes-Miquel, V. S., López-Jiménez, P. A., Martínez-Solano, F. J., & López-Patiño, G. (2016). Numerical modelling of pipelines with air pockets and air valves. Canadian Journal of Civil Engineering, 43(12), 1052-1061. doi:10.1139/cjce-2016-0209 es_ES
dc.description.references García-Todolí, S., Iglesias-Rey, P., Mora-Meliá, D., Martínez-Solano, F., & Fuertes-Miquel, V. (2018). Computational Determination of Air Valves Capacity Using CFD Techniques. Water, 10(10), 1433. doi:10.3390/w10101433 es_ES
dc.description.references Ghidaoui, M. S., & Karney, B. W. (1994). Equivalent Differential Equations in Fixed‐Grid Characteristics Method. Journal of Hydraulic Engineering, 120(10), 1159-1175. doi:10.1061/(asce)0733-9429(1994)120:10(1159) es_ES
dc.description.references GHIDAOUI, M. S. (2004). On the fundamental equations of water hammer. Urban Water Journal, 1(2), 71-83. doi:10.1080/15730620412331290001 es_ES
dc.description.references International Journal for Numerical Methods in Fluids. (s. f.). doi:10.1002/(issn)1097-0363 es_ES
dc.description.references Guinot, V. (2003). An outline of Godunov-type schemes. Godunov-type Schemes, 93-116. doi:10.1016/b978-044451155-3/50005-0 es_ES
dc.description.references Hamam, M. A., & McCorquodale, J. A. (1982). Transient conditions in the transition from gravity to surcharged sewer flow. Canadian Journal of Civil Engineering, 9(2), 189-196. doi:10.1139/l82-022 es_ES
dc.description.references Hou, Q., Tijsseling, A. S., Laanearu, J., Annus, I., Koppel, T., Bergant, A., … van ’t Westende, J. M. C. (2014). Experimental Investigation on Rapid Filling of a Large-Scale Pipeline. Journal of Hydraulic Engineering, 140(11), 04014053. doi:10.1061/(asce)hy.1943-7900.0000914 es_ES
dc.description.references Hou, Q., Zhang, L. X., Tijsseling, A. S., & Kruisbrink, A. C. H. (2012). Rapid filling of pipelines with the SPH particle method. Procedia Engineering, 31, 38-43. doi:10.1016/j.proeng.2012.01.987 es_ES
dc.description.references Issa, R. I., & Kempf, M. H. W. (2003). Simulation of slug flow in horizontal and nearly horizontal pipes with the two-fluid model. International Journal of Multiphase Flow, 29(1), 69-95. doi:10.1016/s0301-9322(02)00127-1 es_ES
dc.description.references Izquierdo, J., Fuertes, V. S., Cabrera, E., Iglesias, P. L., & Garcia-Serra, J. (1999). Pipeline start-up with entrapped air. Journal of Hydraulic Research, 37(5), 579-590. doi:10.1080/00221689909498518 es_ES
dc.description.references Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vučković, S., Hou, Q., … van’t Westende, J. M. C. (2012). Emptying of Large-Scale Pipeline by Pressurized Air. Journal of Hydraulic Engineering, 138(12), 1090-1100. doi:10.1061/(asce)hy.1943-7900.0000631 es_ES
dc.description.references Lee, N. H. 2005. “Effect of Pressurization and Expulsion of Entrapped Air in Pipelines.” PhD diss., School of Civil and Environmental Engineering, Georgia Institute of Technology, USA. es_ES
dc.description.references Leon, A. S., Ghidaoui, M. S., Schmidt, A. R., & Garcia, M. H. (2010). A robust two-equation model for transient-mixed flows. Journal of Hydraulic Research, 48(1), 44-56. doi:10.1080/00221680903565911 es_ES
dc.description.references Li, J., & McCorquodale, A. (1999). Modeling Mixed Flow in Storm Sewers. Journal of Hydraulic Engineering, 125(11), 1170-1180. doi:10.1061/(asce)0733-9429(1999)125:11(1170) es_ES
dc.description.references Lingireddy, S., Wood, D. J., & Zloczower, N. (2004). Pressure surges in pipeline systems resulting from air releases. Journal - American Water Works Association, 96(7), 88-94. doi:10.1002/j.1551-8833.2004.tb10652.x es_ES
dc.description.references Liou, C. P., & Hunt, W. A. (1996). Filling of Pipelines with Undulating Elevation Profiles. Journal of Hydraulic Engineering, 122(10), 534-539. doi:10.1061/(asce)0733-9429(1996)122:10(534) es_ES
dc.description.references Liu, D., Zhou, L., Karney, B., Zhang, Q., & Ou, C. (2011). Rigid-plug elastic-water model for transient pipe flow with entrapped air pocket. Journal of Hydraulic Research, 49(6), 799-803. doi:10.1080/00221686.2011.621740 es_ES
dc.description.references Liu, J., Zhang, J., & Yu, X. (2018). Analytical and numerical investigation on the dynamic characteristics of entrapped air in a rapid filling pipe. Journal of Water Supply: Research and Technology - Aqua, 67(2), 137-146. doi:10.2166/aqua.2018.153 es_ES
dc.description.references Malekpour, A., & Karney, B. W. (2011). Rapid Filling Analysis of Pipelines with Undulating Profiles by the Method of Characteristics. ISRN Applied Mathematics, 2011, 1-16. doi:10.5402/2011/930460 es_ES
dc.description.references Malekpour, A., Karney, B. W., & Nault, J. (2016). Physical Understanding of Sudden Pressurization of Pipe Systems with Entrapped Air: Energy Auditing Approach. Journal of Hydraulic Engineering, 142(2), 04015044. doi:10.1061/(asce)hy.1943-7900.0001067 es_ES
dc.description.references De Martino, G., Fontana, N., & Giugni, M. (2008). Transient Flow Caused by Air Expulsion through an Orifice. Journal of Hydraulic Engineering, 134(9), 1395-1399. doi:10.1061/(asce)0733-9429(2008)134:9(1395) es_ES
dc.description.references Martins, N. M. C., Soares, A. K., Ramos, H. M., & Covas, D. I. C. (2016). CFD modeling of transient flow in pressurized pipes. Computers & Fluids, 126, 129-140. doi:10.1016/j.compfluid.2015.12.002 es_ES
dc.description.references Martins, N. M. C., Delgado, J. N., Ramos, H. M., & Covas, D. I. C. (2017). Maximum transient pressures in a rapidly filling pipeline with entrapped air using a CFD model. Journal of Hydraulic Research, 55(4), 506-519. doi:10.1080/00221686.2016.1275046 es_ES
dc.description.references Martins, S. C., Ramos, H. M., & Almeida, A. B. (2015). Conceptual analogy for modelling entrapped air action in hydraulic systems. Journal of Hydraulic Research, 53(5), 678-686. doi:10.1080/00221686.2015.1077353 es_ES
dc.description.references McInnis, D. A., Karney, B. W., & Axworthy, D. H. (1997). Efficient Valve Representation in Fixed-Grid Characteristics Method. Journal of Hydraulic Engineering, 123(8), 709-718. doi:10.1061/(asce)0733-9429(1997)123:8(709) es_ES
dc.description.references Ramezani, L., & Karney, B. (2017). Water Column Separation and Cavity Collapse for Pipelines Protected with Air Vacuum Valves: Understanding the Essential Wave Processes. Journal of Hydraulic Engineering, 143(2), 04016083. doi:10.1061/(asce)hy.1943-7900.0001235 es_ES
dc.description.references Ramezani, L., Karney, B., & Malekpour, A. (2015). The Challenge of Air Valves: A Selective Critical Literature Review. Journal of Water Resources Planning and Management, 141(10), 04015017. doi:10.1061/(asce)wr.1943-5452.0000530 es_ES
dc.description.references Ramezani, L., Karney, B., & Malekpour, A. (2016). Encouraging Effective Air Management in Water Pipelines: A Critical Review. Journal of Water Resources Planning and Management, 142(12), 04016055. doi:10.1061/(asce)wr.1943-5452.0000695 es_ES
dc.description.references Shimada, M., Brown, J. M., & Vardy, A. E. (2008). Interpolation Errors in Rectangular and Diamond Characteristic Grids. Journal of Hydraulic Engineering, 134(10), 1480-1490. doi:10.1061/(asce)0733-9429(2008)134:10(1480) es_ES
dc.description.references Stephenson, D. (1997). Effects of Air Valves and Pipework on Water Hammer Pressures. Journal of Transportation Engineering, 123(2), 101-106. doi:10.1061/(asce)0733-947x(1997)123:2(101) es_ES
dc.description.references Tijsseling, A. S., Hou, Q., Bozkuş, Z., & Laanearu, J. (2015). Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines. Journal of Pressure Vessel Technology, 138(3). doi:10.1115/1.4031508 es_ES
dc.description.references Tran, P. D. (2017). Pressure Transients Caused by Air-Valve Closure while Filling Pipelines. Journal of Hydraulic Engineering, 143(2), 04016082. doi:10.1061/(asce)hy.1943-7900.0001245 es_ES
dc.description.references Trindade, B. C., & Vasconcelos, J. G. (2013). Modeling of Water Pipeline Filling Events Accounting for Air Phase Interactions. Journal of Hydraulic Engineering, 139(9), 921-934. doi:10.1061/(asce)hy.1943-7900.0000757 es_ES
dc.description.references Vasconcelos, J. G., Klaver, P. R., & Lautenbach, D. J. (2014). Flow regime transition simulation incorporating entrapped air pocket effects. Urban Water Journal, 12(6), 488-501. doi:10.1080/1573062x.2014.881892 es_ES
dc.description.references Vasconcelos, J. G., & Wright, S. J. (2008). Rapid Flow Startup in Filled Horizontal Pipelines. Journal of Hydraulic Engineering, 134(7), 984-992. doi:10.1061/(asce)0733-9429(2008)134:7(984) es_ES
dc.description.references Wang, H., Zhou, L., Liu, D., Karney, B., Wang, P., Xia, L., … Xu, C. (2016). CFD Approach for Column Separation in Water Pipelines. Journal of Hydraulic Engineering, 142(10), 04016036. doi:10.1061/(asce)hy.1943-7900.0001171 es_ES
dc.description.references Wang, L., Wang, F., Karney, B., & Malekpour, A. (2017). Numerical investigation of rapid filling in bypass pipelines. Journal of Hydraulic Research, 55(5), 647-656. doi:10.1080/00221686.2017.1300193 es_ES
dc.description.references Wang, L., Wang, F., & Lei, X. (2018). Investigation on friction models for simulation of pipeline filling transients. Journal of Hydraulic Research, 56(6), 888-895. doi:10.1080/00221686.2018.1434693 es_ES
dc.description.references Watt, C. S. 1975. “Application of Finite Element Method to Unsteady Flow Problems.” PhD diss., England: Suntherland Polytechnic. es_ES
dc.description.references Yang, K. (2001). Practical Method to Prevent Liquid-Column Separation. Journal of Hydraulic Engineering, 127(7), 620-623. doi:10.1061/(asce)0733-9429(2001)127:7(620) es_ES
dc.description.references Zhou, F., Hicks, F. E., & Steffler, P. M. (2002). Transient Flow in a Rapidly Filling Horizontal Pipe Containing Trapped Air. Journal of Hydraulic Engineering, 128(6), 625-634. doi:10.1061/(asce)0733-9429(2002)128:6(625) es_ES
dc.description.references Zhou, L., & Liu, D. (2013). Experimental investigation of entrapped air pocket in a partially full water pipe. Journal of Hydraulic Research, 51(4), 469-474. doi:10.1080/00221686.2013.785985 es_ES
dc.description.references Zhou, L., Liu, D., & Karney, B. (2013). Investigation of Hydraulic Transients of Two Entrapped Air Pockets in a Water Pipeline. Journal of Hydraulic Engineering, 139(9), 949-959. doi:10.1061/(asce)hy.1943-7900.0000750 es_ES
dc.description.references Zhou, L., Liu, D., Karney, B., & Wang, P. (2013). Phenomenon of White Mist in Pipelines Rapidly Filling with Water with Entrapped Air Pockets. Journal of Hydraulic Engineering, 139(10), 1041-1051. doi:10.1061/(asce)hy.1943-7900.0000765 es_ES
dc.description.references Zhou, L., Liu, D., Karney, B., & Zhang, Q. (2011). Influence of Entrapped Air Pockets on Hydraulic Transients in Water Pipelines. Journal of Hydraulic Engineering, 137(12), 1686-1692. doi:10.1061/(asce)hy.1943-7900.0000460 es_ES
dc.description.references Zhou, L., Liu, D., & Ou, C. (2011). Simulation of Flow Transients in a Water Filling Pipe Containing Entrapped Air Pocket with VOF Model. Engineering Applications of Computational Fluid Mechanics, 5(1), 127-140. doi:10.1080/19942060.2011.11015357 es_ES
dc.description.references Zhou, L., Wang, H., Karney, B., Liu, D., Wang, P., & Guo, S. (2018). Dynamic Behavior of Entrapped Air Pocket in a Water Filling Pipeline. Journal of Hydraulic Engineering, 144(8), 04018045. doi:10.1061/(asce)hy.1943-7900.0001491 es_ES
dc.description.references Zhou, L., Pan, T., Wang, H., Liu, D., & Wang, P. (2018). Rapid air expulsion through an orifice in a vertical water pipe. Journal of Hydraulic Research, 57(3), 307-317. doi:10.1080/00221686.2018.1475427 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem