Mostrar el registro sencillo del ítem
dc.contributor.author | Fuertes-Miquel, Vicente S. | es_ES |
dc.contributor.author | Coronado-Hernández, Oscar E. | es_ES |
dc.contributor.author | Mora-Melia, Daniel | es_ES |
dc.contributor.author | Iglesias Rey, Pedro Luís | es_ES |
dc.date.accessioned | 2021-01-27T04:32:20Z | |
dc.date.available | 2021-01-27T04:32:20Z | |
dc.date.issued | 2019-04-21 | es_ES |
dc.identifier.issn | 1573-062X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159981 | |
dc.description.abstract | [EN] Filling and emptying processes are common maneuvers while operating, controlling and managing water pipeline systems. Currently, these operations are executed following recommendations from technical manuals and pipe manufacturers; however, these recommendations have a lack of understanding about the behavior of these processes. The application of mathematical models considering transient flows with entrapped air pockets is necessary because a rapid filling operation can cause pressure surges due to air pocket compressions, while an uncontrolled emptying operation can generate troughs of sub-atmospheric pressure caused by air pocket expansion. Depending on pipe and installation conditions, either situation can produce a rupture of pipe systems. Recently, reliable mathematical models have been developed by different researchers. This paper reviews and compares various mathematical models to simulate these processes. Water columns can be analyzed using a rigid water column model, an elastic water model, or 2D/3D CFD models; air-water interfaces using a piston-flow model or more complex models; air pockets through a polytropic model; and air valves using an isentropic nozzle flow or similar approaches. This work can be used as a starting point for planning filling and emptying operations in pressurized pipelines. Uncertainties of mathematical models of two-phases flow concerning to a non-variable friction factor, a polytropic coefficient, an air pocket sizes and an air valve behavior are identified. | es_ES |
dc.description.sponsorship | This work was supported by the Program Fondecyt Regular (Chile) [Project 1180660]; Fundacion Centro de Estudios Intedisciplinarios Basicos y Aplicados, CEIBA (Colombia). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Urban Water Journal | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Air-water | es_ES |
dc.subject | Emptying | es_ES |
dc.subject | Filling | es_ES |
dc.subject | Transient flow | es_ES |
dc.subject | Water distribution system | es_ES |
dc.subject.classification | MECANICA DE FLUIDOS | es_ES |
dc.title | Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/1573062X.2019.1669188 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FONDECYT//1180660/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Fuertes-Miquel, VS.; Coronado-Hernández, OE.; Mora-Melia, D.; Iglesias Rey, PL. (2019). Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review. Urban Water Journal. 16(4):299-311. https://doi.org/10.1080/1573062X.2019.1669188 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/1573062X.2019.1669188 | es_ES |
dc.description.upvformatpinicio | 299 | es_ES |
dc.description.upvformatpfin | 311 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\410087 | es_ES |
dc.contributor.funder | Fondo Nacional de Desarrollo Científico y Tecnológico, Chile | es_ES |
dc.description.references | Abreu, J., Cabrera, E., Izquierdo, J., & García-Serra, J. (1999). Flow Modeling in Pressurized Systems Revisited. Journal of Hydraulic Engineering, 125(11), 1154-1169. doi:10.1061/(asce)0733-9429(1999)125:11(1154) | es_ES |
dc.description.references | Apollonio, C., Balacco, G., Fontana, N., Giugni, M., Marini, G., & Piccinni, A. (2016). Hydraulic Transients Caused by Air Expulsion During Rapid Filling of Undulating Pipelines. Water, 8(1), 25. doi:10.3390/w8010025 | es_ES |
dc.description.references | Balacco, G., Apollonio, C., & Piccinni, A. F. (2015). Experimental analysis of air valve behaviour during hydraulic transients. Journal of Applied Water Engineering and Research, 3(1), 3-11. doi:10.1080/23249676.2015.1032374 | es_ES |
dc.description.references | Beecham, S., & Lucke, T. (2013). Air water flows in building drainage systems. Urban Water Journal, 12(6), 455-467. doi:10.1080/1573062x.2013.820335 | es_ES |
dc.description.references | Bergant, A., Simpson, A. R., & Tijsseling, A. S. (2006). Water hammer with column separation: A historical review. Journal of Fluids and Structures, 22(2), 135-171. doi:10.1016/j.jfluidstructs.2005.08.008 | es_ES |
dc.description.references | Besharat, M., Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Viseu, M. T., & Ramos, H. M. (2018). Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket. Urban Water Journal, 15(8), 769-779. doi:10.1080/1573062x.2018.1540711 | es_ES |
dc.description.references | Bousso, S., Daynou, M., & Fuamba, M. (2013). Numerical Modeling of Mixed Flows in Storm Water Systems: Critical Review of Literature. Journal of Hydraulic Engineering, 139(4), 385-396. doi:10.1061/(asce)hy.1943-7900.0000680 | es_ES |
dc.description.references | Cabrera, E., Abreu, J., Pérez, R., & Vela, A. (1992). Influence of Liquid Length Variation in Hydraulic Transients. Journal of Hydraulic Engineering, 118(12), 1639-1650. doi:10.1061/(asce)0733-9429(1992)118:12(1639) | es_ES |
dc.description.references | Carlos, M., Arregui, F. J., Cabrera, E., & Palau, C. V. (2011). Understanding Air Release through Air Valves. Journal of Hydraulic Engineering, 137(4), 461-469. doi:10.1061/(asce)hy.1943-7900.0000324 | es_ES |
dc.description.references | Chaudhry, M. H. (2014). Applied Hydraulic Transients. doi:10.1007/978-1-4614-8538-4 | es_ES |
dc.description.references | Hanif Chaudhry, M., & Prashanth Reddy, H. (2011). Mathematical Modeling of Lake Tap Flows. Journal of Hydraulic Engineering, 137(5), 611-614. doi:10.1061/(asce)hy.1943-7900.0000339 | es_ES |
dc.description.references | Coronado-Hernández, O. E. 2019. “Transient Phenemona during the Emptying Process of Water in Pressurized Pipelines.” PhD diss., Spain: Department of Hydraulic Engineering, Polytechnic University of Valencia. | es_ES |
dc.description.references | Coronado-Hernández, O., Fuertes-Miquel, V., Besharat, M., & Ramos, H. (2017). Experimental and Numerical Analysis of a Water Emptying Pipeline Using Different Air Valves. Water, 9(2), 98. doi:10.3390/w9020098 | es_ES |
dc.description.references | Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Besharat, M., & Ramos, H. M. (2018). Subatmospheric pressure in a water draining pipeline with an air pocket. Urban Water Journal, 15(4), 346-352. doi:10.1080/1573062x.2018.1475578 | es_ES |
dc.description.references | Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Iglesias-Rey, P. L., & Martínez-Solano, F. J. (2018). Rigid Water Column Model for Simulating the Emptying Process in a Pipeline Using Pressurized Air. Journal of Hydraulic Engineering, 144(4), 06018004. doi:10.1061/(asce)hy.1943-7900.0001446 | es_ES |
dc.description.references | Covas, D., Stoianov, I., Ramos, H., Graham, N., Maksimović, Č., & Butler, D. (2004). Water hammer in pressurized polyethylene pipes: conceptual model and experimental analysis. Urban Water Journal, 1(2), 177-197. doi:10.1080/15730620412331289977 | es_ES |
dc.description.references | Cunge, J. A., & Wegner, M. (1964). Intégration numérique des équations d’écoulement de barré de Saint-Venant par un schéma implicite de différences finies. La Houille Blanche, 50(1), 33-39. doi:10.1051/lhb/1964002 | es_ES |
dc.description.references | Fontana, N., Galdiero, E., & Giugni, M. (2016). Pressure surges caused by air release in water pipelines. Journal of Hydraulic Research, 54(4), 461-472. doi:10.1080/00221686.2016.1168324 | es_ES |
dc.description.references | Fuertes-Miquel, V. S. 2001. “Hydraulic Transients with Entrapped Air Pockets.” PhD diss., Department of Hydraulic Engineering, Polytechnic University of Valencia, Spain. | es_ES |
dc.description.references | Fuertes-Miquel, V. S., Coronado-Hernández, O. E., Iglesias-Rey, P. L., & Mora-Meliá, D. (2018). Transient phenomena during the emptying process of a single pipe with water–air interaction. Journal of Hydraulic Research, 57(3), 318-326. doi:10.1080/00221686.2018.1492465 | es_ES |
dc.description.references | Fuertes-Miquel, V. S., López-Jiménez, P. A., Martínez-Solano, F. J., & López-Patiño, G. (2016). Numerical modelling of pipelines with air pockets and air valves. Canadian Journal of Civil Engineering, 43(12), 1052-1061. doi:10.1139/cjce-2016-0209 | es_ES |
dc.description.references | García-Todolí, S., Iglesias-Rey, P., Mora-Meliá, D., Martínez-Solano, F., & Fuertes-Miquel, V. (2018). Computational Determination of Air Valves Capacity Using CFD Techniques. Water, 10(10), 1433. doi:10.3390/w10101433 | es_ES |
dc.description.references | Ghidaoui, M. S., & Karney, B. W. (1994). Equivalent Differential Equations in Fixed‐Grid Characteristics Method. Journal of Hydraulic Engineering, 120(10), 1159-1175. doi:10.1061/(asce)0733-9429(1994)120:10(1159) | es_ES |
dc.description.references | GHIDAOUI, M. S. (2004). On the fundamental equations of water hammer. Urban Water Journal, 1(2), 71-83. doi:10.1080/15730620412331290001 | es_ES |
dc.description.references | International Journal for Numerical Methods in Fluids. (s. f.). doi:10.1002/(issn)1097-0363 | es_ES |
dc.description.references | Guinot, V. (2003). An outline of Godunov-type schemes. Godunov-type Schemes, 93-116. doi:10.1016/b978-044451155-3/50005-0 | es_ES |
dc.description.references | Hamam, M. A., & McCorquodale, J. A. (1982). Transient conditions in the transition from gravity to surcharged sewer flow. Canadian Journal of Civil Engineering, 9(2), 189-196. doi:10.1139/l82-022 | es_ES |
dc.description.references | Hou, Q., Tijsseling, A. S., Laanearu, J., Annus, I., Koppel, T., Bergant, A., … van ’t Westende, J. M. C. (2014). Experimental Investigation on Rapid Filling of a Large-Scale Pipeline. Journal of Hydraulic Engineering, 140(11), 04014053. doi:10.1061/(asce)hy.1943-7900.0000914 | es_ES |
dc.description.references | Hou, Q., Zhang, L. X., Tijsseling, A. S., & Kruisbrink, A. C. H. (2012). Rapid filling of pipelines with the SPH particle method. Procedia Engineering, 31, 38-43. doi:10.1016/j.proeng.2012.01.987 | es_ES |
dc.description.references | Issa, R. I., & Kempf, M. H. W. (2003). Simulation of slug flow in horizontal and nearly horizontal pipes with the two-fluid model. International Journal of Multiphase Flow, 29(1), 69-95. doi:10.1016/s0301-9322(02)00127-1 | es_ES |
dc.description.references | Izquierdo, J., Fuertes, V. S., Cabrera, E., Iglesias, P. L., & Garcia-Serra, J. (1999). Pipeline start-up with entrapped air. Journal of Hydraulic Research, 37(5), 579-590. doi:10.1080/00221689909498518 | es_ES |
dc.description.references | Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vučković, S., Hou, Q., … van’t Westende, J. M. C. (2012). Emptying of Large-Scale Pipeline by Pressurized Air. Journal of Hydraulic Engineering, 138(12), 1090-1100. doi:10.1061/(asce)hy.1943-7900.0000631 | es_ES |
dc.description.references | Lee, N. H. 2005. “Effect of Pressurization and Expulsion of Entrapped Air in Pipelines.” PhD diss., School of Civil and Environmental Engineering, Georgia Institute of Technology, USA. | es_ES |
dc.description.references | Leon, A. S., Ghidaoui, M. S., Schmidt, A. R., & Garcia, M. H. (2010). A robust two-equation model for transient-mixed flows. Journal of Hydraulic Research, 48(1), 44-56. doi:10.1080/00221680903565911 | es_ES |
dc.description.references | Li, J., & McCorquodale, A. (1999). Modeling Mixed Flow in Storm Sewers. Journal of Hydraulic Engineering, 125(11), 1170-1180. doi:10.1061/(asce)0733-9429(1999)125:11(1170) | es_ES |
dc.description.references | Lingireddy, S., Wood, D. J., & Zloczower, N. (2004). Pressure surges in pipeline systems resulting from air releases. Journal - American Water Works Association, 96(7), 88-94. doi:10.1002/j.1551-8833.2004.tb10652.x | es_ES |
dc.description.references | Liou, C. P., & Hunt, W. A. (1996). Filling of Pipelines with Undulating Elevation Profiles. Journal of Hydraulic Engineering, 122(10), 534-539. doi:10.1061/(asce)0733-9429(1996)122:10(534) | es_ES |
dc.description.references | Liu, D., Zhou, L., Karney, B., Zhang, Q., & Ou, C. (2011). Rigid-plug elastic-water model for transient pipe flow with entrapped air pocket. Journal of Hydraulic Research, 49(6), 799-803. doi:10.1080/00221686.2011.621740 | es_ES |
dc.description.references | Liu, J., Zhang, J., & Yu, X. (2018). Analytical and numerical investigation on the dynamic characteristics of entrapped air in a rapid filling pipe. Journal of Water Supply: Research and Technology - Aqua, 67(2), 137-146. doi:10.2166/aqua.2018.153 | es_ES |
dc.description.references | Malekpour, A., & Karney, B. W. (2011). Rapid Filling Analysis of Pipelines with Undulating Profiles by the Method of Characteristics. ISRN Applied Mathematics, 2011, 1-16. doi:10.5402/2011/930460 | es_ES |
dc.description.references | Malekpour, A., Karney, B. W., & Nault, J. (2016). Physical Understanding of Sudden Pressurization of Pipe Systems with Entrapped Air: Energy Auditing Approach. Journal of Hydraulic Engineering, 142(2), 04015044. doi:10.1061/(asce)hy.1943-7900.0001067 | es_ES |
dc.description.references | De Martino, G., Fontana, N., & Giugni, M. (2008). Transient Flow Caused by Air Expulsion through an Orifice. Journal of Hydraulic Engineering, 134(9), 1395-1399. doi:10.1061/(asce)0733-9429(2008)134:9(1395) | es_ES |
dc.description.references | Martins, N. M. C., Soares, A. K., Ramos, H. M., & Covas, D. I. C. (2016). CFD modeling of transient flow in pressurized pipes. Computers & Fluids, 126, 129-140. doi:10.1016/j.compfluid.2015.12.002 | es_ES |
dc.description.references | Martins, N. M. C., Delgado, J. N., Ramos, H. M., & Covas, D. I. C. (2017). Maximum transient pressures in a rapidly filling pipeline with entrapped air using a CFD model. Journal of Hydraulic Research, 55(4), 506-519. doi:10.1080/00221686.2016.1275046 | es_ES |
dc.description.references | Martins, S. C., Ramos, H. M., & Almeida, A. B. (2015). Conceptual analogy for modelling entrapped air action in hydraulic systems. Journal of Hydraulic Research, 53(5), 678-686. doi:10.1080/00221686.2015.1077353 | es_ES |
dc.description.references | McInnis, D. A., Karney, B. W., & Axworthy, D. H. (1997). Efficient Valve Representation in Fixed-Grid Characteristics Method. Journal of Hydraulic Engineering, 123(8), 709-718. doi:10.1061/(asce)0733-9429(1997)123:8(709) | es_ES |
dc.description.references | Ramezani, L., & Karney, B. (2017). Water Column Separation and Cavity Collapse for Pipelines Protected with Air Vacuum Valves: Understanding the Essential Wave Processes. Journal of Hydraulic Engineering, 143(2), 04016083. doi:10.1061/(asce)hy.1943-7900.0001235 | es_ES |
dc.description.references | Ramezani, L., Karney, B., & Malekpour, A. (2015). The Challenge of Air Valves: A Selective Critical Literature Review. Journal of Water Resources Planning and Management, 141(10), 04015017. doi:10.1061/(asce)wr.1943-5452.0000530 | es_ES |
dc.description.references | Ramezani, L., Karney, B., & Malekpour, A. (2016). Encouraging Effective Air Management in Water Pipelines: A Critical Review. Journal of Water Resources Planning and Management, 142(12), 04016055. doi:10.1061/(asce)wr.1943-5452.0000695 | es_ES |
dc.description.references | Shimada, M., Brown, J. M., & Vardy, A. E. (2008). Interpolation Errors in Rectangular and Diamond Characteristic Grids. Journal of Hydraulic Engineering, 134(10), 1480-1490. doi:10.1061/(asce)0733-9429(2008)134:10(1480) | es_ES |
dc.description.references | Stephenson, D. (1997). Effects of Air Valves and Pipework on Water Hammer Pressures. Journal of Transportation Engineering, 123(2), 101-106. doi:10.1061/(asce)0733-947x(1997)123:2(101) | es_ES |
dc.description.references | Tijsseling, A. S., Hou, Q., Bozkuş, Z., & Laanearu, J. (2015). Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines. Journal of Pressure Vessel Technology, 138(3). doi:10.1115/1.4031508 | es_ES |
dc.description.references | Tran, P. D. (2017). Pressure Transients Caused by Air-Valve Closure while Filling Pipelines. Journal of Hydraulic Engineering, 143(2), 04016082. doi:10.1061/(asce)hy.1943-7900.0001245 | es_ES |
dc.description.references | Trindade, B. C., & Vasconcelos, J. G. (2013). Modeling of Water Pipeline Filling Events Accounting for Air Phase Interactions. Journal of Hydraulic Engineering, 139(9), 921-934. doi:10.1061/(asce)hy.1943-7900.0000757 | es_ES |
dc.description.references | Vasconcelos, J. G., Klaver, P. R., & Lautenbach, D. J. (2014). Flow regime transition simulation incorporating entrapped air pocket effects. Urban Water Journal, 12(6), 488-501. doi:10.1080/1573062x.2014.881892 | es_ES |
dc.description.references | Vasconcelos, J. G., & Wright, S. J. (2008). Rapid Flow Startup in Filled Horizontal Pipelines. Journal of Hydraulic Engineering, 134(7), 984-992. doi:10.1061/(asce)0733-9429(2008)134:7(984) | es_ES |
dc.description.references | Wang, H., Zhou, L., Liu, D., Karney, B., Wang, P., Xia, L., … Xu, C. (2016). CFD Approach for Column Separation in Water Pipelines. Journal of Hydraulic Engineering, 142(10), 04016036. doi:10.1061/(asce)hy.1943-7900.0001171 | es_ES |
dc.description.references | Wang, L., Wang, F., Karney, B., & Malekpour, A. (2017). Numerical investigation of rapid filling in bypass pipelines. Journal of Hydraulic Research, 55(5), 647-656. doi:10.1080/00221686.2017.1300193 | es_ES |
dc.description.references | Wang, L., Wang, F., & Lei, X. (2018). Investigation on friction models for simulation of pipeline filling transients. Journal of Hydraulic Research, 56(6), 888-895. doi:10.1080/00221686.2018.1434693 | es_ES |
dc.description.references | Watt, C. S. 1975. “Application of Finite Element Method to Unsteady Flow Problems.” PhD diss., England: Suntherland Polytechnic. | es_ES |
dc.description.references | Yang, K. (2001). Practical Method to Prevent Liquid-Column Separation. Journal of Hydraulic Engineering, 127(7), 620-623. doi:10.1061/(asce)0733-9429(2001)127:7(620) | es_ES |
dc.description.references | Zhou, F., Hicks, F. E., & Steffler, P. M. (2002). Transient Flow in a Rapidly Filling Horizontal Pipe Containing Trapped Air. Journal of Hydraulic Engineering, 128(6), 625-634. doi:10.1061/(asce)0733-9429(2002)128:6(625) | es_ES |
dc.description.references | Zhou, L., & Liu, D. (2013). Experimental investigation of entrapped air pocket in a partially full water pipe. Journal of Hydraulic Research, 51(4), 469-474. doi:10.1080/00221686.2013.785985 | es_ES |
dc.description.references | Zhou, L., Liu, D., & Karney, B. (2013). Investigation of Hydraulic Transients of Two Entrapped Air Pockets in a Water Pipeline. Journal of Hydraulic Engineering, 139(9), 949-959. doi:10.1061/(asce)hy.1943-7900.0000750 | es_ES |
dc.description.references | Zhou, L., Liu, D., Karney, B., & Wang, P. (2013). Phenomenon of White Mist in Pipelines Rapidly Filling with Water with Entrapped Air Pockets. Journal of Hydraulic Engineering, 139(10), 1041-1051. doi:10.1061/(asce)hy.1943-7900.0000765 | es_ES |
dc.description.references | Zhou, L., Liu, D., Karney, B., & Zhang, Q. (2011). Influence of Entrapped Air Pockets on Hydraulic Transients in Water Pipelines. Journal of Hydraulic Engineering, 137(12), 1686-1692. doi:10.1061/(asce)hy.1943-7900.0000460 | es_ES |
dc.description.references | Zhou, L., Liu, D., & Ou, C. (2011). Simulation of Flow Transients in a Water Filling Pipe Containing Entrapped Air Pocket with VOF Model. Engineering Applications of Computational Fluid Mechanics, 5(1), 127-140. doi:10.1080/19942060.2011.11015357 | es_ES |
dc.description.references | Zhou, L., Wang, H., Karney, B., Liu, D., Wang, P., & Guo, S. (2018). Dynamic Behavior of Entrapped Air Pocket in a Water Filling Pipeline. Journal of Hydraulic Engineering, 144(8), 04018045. doi:10.1061/(asce)hy.1943-7900.0001491 | es_ES |
dc.description.references | Zhou, L., Pan, T., Wang, H., Liu, D., & Wang, P. (2018). Rapid air expulsion through an orifice in a vertical water pipe. Journal of Hydraulic Research, 57(3), 307-317. doi:10.1080/00221686.2018.1475427 | es_ES |