- -

Graded-index optical fiber emulator of an interacting three-atom system: illumination control of particle statistics and classical non-separability

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Graded-index optical fiber emulator of an interacting three-atom system: illumination control of particle statistics and classical non-separability

Mostrar el registro completo del ítem

Garcia March, MA.; Harshman, N.; Da Silva, H.; Fogarty, T.; Busch, T.; Lewenstein, M.; Ferrando, A. (2019). Graded-index optical fiber emulator of an interacting three-atom system: illumination control of particle statistics and classical non-separability. Quantum. 3:210/1-210/14. https://doi.org/10.22331/q-2019-12-09-210

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159986

Ficheros en el ítem

Metadatos del ítem

Título: Graded-index optical fiber emulator of an interacting three-atom system: illumination control of particle statistics and classical non-separability
Autor: Garcia March, Miguel Angel Harshman, N.L. da Silva, H. Fogarty, T. Busch, Th. Lewenstein, M. FERRANDO, A.
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] We show that a system of three trapped ultracold and strongly interacting atoms in one-dimension can be emulated using an optical fiber with a graded-index profile and thin metallic slabs. While the wave-nature of ...[+]
Palabras clave: Graded index optical fiber , Quantum simulators , Few atom systems , Ultracold atoms , Photonic crystal fibers
Derechos de uso: Reconocimiento (by)
Fuente:
Quantum. (eissn: 2521-327X )
DOI: 10.22331/q-2019-12-09-210
Editorial:
Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
Versión del editor: https://doi.org/10.22331/q-2019-12-09-210
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//FIS2016-79508-P/ES/FRONTERAS DE LA FISICA TEORICA ATOMICA, MOLECULAR, Y OPTICA/
...[+]
info:eu-repo/grantAgreement/MINECO//FIS2016-79508-P/ES/FRONTERAS DE LA FISICA TEORICA ATOMICA, MOLECULAR, Y OPTICA/
info:eu-repo/grantAgreement/Generalitat de Catalunya/Grups de Recerca Reconeguts i Finançats per la Generalitat de Catalunya 2017-2019/2017 SGR 1341/
info:eu-repo/grantAgreement/NCN//2016%2F20%2FW%2FST4%2F00314/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2017-86102-C2-1-R/ES/DISPOSITIVOS ACTIVOS FOTONICOS BASADOS EN NANOESTRUCTURAS SEMICONDUCTORAS TIPO PEROVSKITA/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F098/
info:eu-repo/grantAgreement/MCIU//BEAGAL18%2F00203/
[-]
Agradecimientos:
Spanish Ministry MINECO (National Plan15 Grant: FISICATEAMO No. FIS2016-79508-P, FPI); European Social Fund; Fundacio Cellex; Generalitat de Catalunya (AGAUR Grant No.2017, SGR 1341, and CERCA Program); European Commission ...[+]
Tipo: Artículo

References

S. Haroche, Rev. Mod. Phys. 85, 1083 (2013), URL https://doi.org/10.1103/RevModPhys.85.1083.

D. J. Wineland, Rev. Mod. Phys. 85, 1103 (2013), URL https://doi.org/10.1103/RevModPhys.85.1103.

T. Sowiński and M. A. García-March, Rep. Prog. Phys. 82, 104401 (2019), URL https://doi.org/10.1088/1361-6633/ab3a80. [+]
S. Haroche, Rev. Mod. Phys. 85, 1083 (2013), URL https://doi.org/10.1103/RevModPhys.85.1083.

D. J. Wineland, Rev. Mod. Phys. 85, 1103 (2013), URL https://doi.org/10.1103/RevModPhys.85.1103.

T. Sowiński and M. A. García-March, Rep. Prog. Phys. 82, 104401 (2019), URL https://doi.org/10.1088/1361-6633/ab3a80.

G. Nienhuis and L. Allen, Phys. Rev. A 48, 656 (1993), URL https://doi.org/10.1103/PhysRevA.48.656.

S. Chávez-Cerda, J. R. Moya-Cessa, and H. M. Moya-Cessa, J. Opt. Soc. Am. B, JOSAB 24, 404 (2007), ISSN 1520-8540, URL https://doi.org/10.1364/JOSAB.24.000404.

S. Longhi, Laser & Photonics Reviews 3, 243 (2008), URL https://doi.org/10.1002/lpor.200810055.

R. Fedele and M. A. Man’ko, Eur. Phys. J. D 27, 263 (2003), ISSN 1434-6060, 1434-6079, URL https://doi.org/10.1140/epjd/e2003-00274-6.

M. A. Man'ko, J. Phys.: Conf. Ser. 99, 012012 (2008), URL https://doi.org/10.1088/1742-6596/99/1/012012.

D. Gloge and E. A. J. Marcatili, Bell System Technical Journal 52, 1563 (1973), URL https://doi.org/10.1002/j.1538-7305.1973.tb02033.x.

A. Ghatak and M. S. Sodha, Inhomogeneous Optical Waveguides (Optical Physics and Engineering) (Springer, New York, 1977), URL https://doi.org/10.1007/978-1-4615-8762-0.

A. W. Snyder and J. D. Love, Optical waveguide theory, vol. Science paperbacks ; 190 (Chapman and Hall, London ; New York, 1983), URL https://doi.org/10.1007/978-1-4613-2813-1.

S. Longhi, Opt. Lett. 28, 2363 (2003), URL https://doi.org/10.1364/OL.28.002363.

A. Mafi, Journal of Lightwave Technology 30, 2803 (2012), URL https://doi.org/10.1109/JLT.2012.2208215.

W. Renninger and F. Wise, Nature Communications 4, 1719 (2013), URL https://doi.org/10.1038/ncomms2739.

L. G. Wright, D. N. Christodoulides, and F. W. Wise, Nature Photonics 9, 306 (2015), URL https://doi.org/10.1038/nphoton.2015.61.

L. G. Wright, Z. Liu, D. A. Nolan, M.-J. Li, D. N. Christodoulides, and F. W. Wise, Nature Photonics 10, 771 (2016), URL https://doi.org/10.1038/nphoton.2016.227.

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, Nature Photonics 11, 237 (2017), URL https://doi.org/10.1038/nphoton.2017.32.

M. Conforti, C. Mas Arabi, A. Mussot, and A. Kudlinski, Optics Letters 42, 4004 (2017), URL https://doi.org/10.1364/OL.42.004004.

R. J. C. Spreeuw, Foundations of Physics 28, 361 (1998), URL https://doi.org/10.1023/A:1018703709245.

R. J. C. Spreeuw, Phys. Rev. A 63, 062302 (2001), URL https://doi.org/10.1103/PhysRevA.63.062302.

P. Ghose and A. Mukherjee, Reviews in Theoretical Science 2, 274 (2014), URL https://doi.org/10.1166/rits.2014.1024.

N. Korolokova and G. Leuchs, Rep. Prog. Phys. 82, 056001 (2019), URL https://doi.org/10.1088/1361-6633/ab0c6b.

A. Aiello, F. Töppel, C. Marquardt, E. Giacobino, and G. Leuchs, New J. Phys. 17, 043024 (2015), URL https://doi.org/10.1088/1367-2630/17/4/043024.

A. Luis, Optics Communications 282, 3665 (2009), URL https://doi.org/10.1016/j.optcom.2009.06.024.

E. Karimi and R. W. Boyd, Science 350, 1172 (2015), URL https://doi.org/10.1126/science.aad7174.

N. L. Harshman and S. Wickramasekara, Open Syst Inf Dyn 14, 341 (2007), URL https://doi.org/10.1007/s11080-007-9057-z.

W. F. Balthazar, C. E. R. Souza, D. P. Caetano, E. F. G. ao, J. A. O. Huguenin, and A. Z. Khoury, Opt. Lett. 41, 5797 (2016), URL https://doi.org/10.1364/OL.41.005797.

K. F. Lee and J. E. Thomas, Phys. Rev. Lett. 88, 097902 (2002), URL https://doi.org/10.1103/PhysRevLett.88.097902.

J. Fu, Z. Si, S. Tang, and J. Deng, Phys. Rev. A 70, 042313 (2004), URL https://doi.org/10.1103/PhysRevA.70.042313.

K. F. Lee and J. E. Thomas, Phys. Rev. A 69, 052311 (2004), URL https://doi.org/10.1103/PhysRevA.69.052311.

F. D. Zela, Optica 5, 243 (2018), URL https://doi.org/10.1364/OPTICA.5.000243.

B. Stoklasa, L. Motka, J. Rehacek, Z. Hradil, L. L. Sánchez-Soto, and G. S. Agarwal, New Journal of Physics 17, 113046 (2015), URL https://doi.org/10.1088/1367-2630/17/11/113046.

X.-F. Qian, B. Little, J. C. Howell, and J. H. Eberly, Optica 2, 611 (2015), URL https://doi.org/10.1364/OPTICA.2.000611.

S. G. Krivoshlykov and I. N. Sissakian, Opt Quant Electron 12, 463 (1980), ISSN 0306-8919, 1572-817X, URL https://doi.org/10.1007/BF00619920.

S. K. Joseph, J. Sabuco, L. Y. Chew, and M. A. F. Sanjuán, Opt. Express, OE 23, 32191 (2015), ISSN 1094-4087, URL https://doi.org/10.1364/OE.23.032191.

M. A. Man'ko, V. I. Man'ko, and R. Vilela Mendes, Physics Letters A 288, 132 (2001), ISSN 0375-9601, URL https://doi.org/10.1016/S0375-9601(01)00517-5.

M. Hamermesh, Group Theory and Its Application to Physical Problems (Dover Publications, New York, 1989), reprint edition ed., ISBN 978-0-486-66181-0.

P. McIsaac, IEEE Transactions on Microwave Theory and Techniques 23, 421 (1975), URL https://doi.org/10.1109/TMTT.1975.1128584.

R. Guobin, W. Zhi, L. Shuqin, and J. Shuisheng, Opt. Express, OE 11, 1310 (2003), URL https://doi.org/10.1364/OE.11.001310.

A. Ferrando, Phys. Rev. E 72, 036612 (2005), URL https://doi.org/10.1103/PhysRevE.72.036612.

M. Á. García-March, A. Ferrando, M. Zacarés, J. Vijande, and L. D. Carr, Physica D: Nonlinear Phenomena 238, 1432 (2009a), ISSN 0167-2789, URL https://doi.org/10.1016/j.physd.2008.12.007.

M.-Á. García-March, A. Ferrando, M. Zacarés, S. Sahu, and D. E. Ceballos-Herrera, Phys. Rev. A 79, 053820 (2009b), URL https://doi.org/10.1103/PhysRevA.79.053820.

L. D. Landau and E. M. Lifshitz, in Quantum Mechanics (Third Edition) (Pergamon, 1977), pp. 50 - 81, third edition ed., ISBN 978-0-08-020940-1, URL https://doi.org/10.1016/B978-0-08-020940-1.50010-4.

Molte Emil Strange Andersen, N. L. Harshman, and N. T. Zinner, Phys. Rev. A 96, 033616 (2017), URL https://doi.org/10.1103/PhysRevA.96.033616.

F. Serwane, G. Zürn, T. Lompe, T. B. Ottenstein, A. N. Wenz, and S. Jochim, Science 332, 336 (2011), URL http://doi.org/10.1126/science.1201351.

A. N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe, and S. Jochim, Science 342, 457 (2013), URL http://doi.org/10.1126/science.1240516/.

M. A. García-March, B. Juliá-Díaz, G. E. Astrakharchik, J. Boronat, and A. Polls, Phys. Rev. A 90, 063605 (2014), URL https://doi.org/10.1103/PhysRevA.90.063605.

N. L. Harshman, Phys. Rev. A 86, 052122 (2012), URL https://doi.org/10.1103/PhysRevA.86.052122.

N. L. Harshman, Few-Body Syst 57, 11 (2016), ISSN 0177-7963, 1432-5411, URL https://doi.org/10.1007/s00601-015-1024-6.

M. Girardeau, Journal of Mathematical Physics 1, 516 (1960), ISSN 00222488, URL https://doi.org/10.1063/1.1703687.

K. Banaszek and K. Wódkiewicz, Phys. Rev. A 58, 4345 (1998), URL https://doi.org/10.1103/PhysRevA.58.4345.

T. Fogarty, T. Busch, J. Goold, and M. Paternostro, New Journal of Physics 13, 023016 (2011), URL https://doi.org/10.1088/1367-2630/13/2/023016.

J. Li, T. Fogarty, C. Cormick, J. Goold, T. Busch, and M. Paternostro, Phys. Rev. A 84, 022321 (2011), URL https://doi.org/10.1103/PhysRevA.84.022321.

N. Bhattacharya, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, Phys. Rev. Lett. 88, 137901 (2002), URL https://doi.org/10.1103/PhysRevLett.88.137901.

B. Perez-Garcia, J. Francis, M. McLaren, R. I. Hernandez-Aranda, A. Forbes, and T. Konrad, Physics Letters A 379, 1675 (2015), ISSN 0375-9601, URL https://doi.org/10.1016/j.physleta.2015.04.034.

D. Guzman-Silva, R. Brüning, F. Zimmermann, C. Vetter, M. Gräfe, M. Heinrich, S. Nolte, M. Duparré, A. Aiello, M. Ornigotti, et al., Laser & Photonics Reviews 10, 317 (2016), URL https://doi.org/10.1002/lpor.201500252.

F. Toeppel, A. Aiello, C. Marquardt, E. Giacobino, and G. Leuchs, New Journal of Physics 16, 073019 (2014), URL https://doi.org/10.1088/1367-2630/16/7/073019.

S. Berg-Johansen, F. Töppel, B. Stiller, P. Banzer, M. Ornigotti, E. Giacobino, G. Leuchs, A. Aiello, and C. Marquardt, Optica 2, 864 (2015), URL https://doi.org/10.1364/OPTICA.2.000864.

V. Doya, O. Legrand, F. Mortessagne, and C. Miniatura, Phys. Rev. E 65, 056223 (2002), URL https://doi.org/10.1103/PhysRevE.65.056223.

P. L. Knight, E. Roldán, and J. E. Sipe, Phys. Rev. A 68, 020301(R) (2003), URL https://doi.org/10.1103/PhysRevA.68.020301.

V. D'Ambrosio, G. Carvacho, F. Graffitti, C. Vitelli, B. Piccirillo, L. Marrucci, and F. Sciarrino, Phys. Rev. A 94, 030304(R) (2016), URL https://doi.org/10.1103/PhysRevA.94.030304.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem