- -

Thin Film of Perovskite (Mixed-Cation of Lead Bromide FA(1-x)MA(x)PbBr) Obtained by One-Step Method

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Thin Film of Perovskite (Mixed-Cation of Lead Bromide FA(1-x)MA(x)PbBr) Obtained by One-Step Method

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Slimi, B. es_ES
dc.contributor.author Mollar García, Miguel Alfonso es_ES
dc.contributor.author Marí, B. es_ES
dc.contributor.author Chtourou, R. es_ES
dc.date.accessioned 2021-01-27T04:32:43Z
dc.date.available 2021-01-27T04:32:43Z
dc.date.issued 2019-12 es_ES
dc.identifier.issn 0361-5235 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159991
dc.description Correction to: Thin Film of Perovskite (Mixed-Cation of Lead Bromide FA(1-x)MA(x)PbBr(3)) Obtained by One-Step Method es_ES
dc.description.abstract [EN] Perovskite materials for solar cell applications were prepared by a one-step method. In the following work, the spin coating technique was used for organic-inorganic hybrid perovskite formamidinium lead tribromide (FAPbBr(3)), methylammonium lead tribromide (MAPbBr(3)) and formamidinium methylammonium lead tribromide (FA(1-x)MA(x)PbBr(3)).Thin films of mixed FA(1-x)MA(x)PbBr(3) (x = 0-1) perovskites deposited on indium tin oxide glass substrates were obtained by mixing FAPbBr(3) and MAPbBr(3) in different proportions. Structural x-ray diffraction (XRD), morphological (Scanning Electron Microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX) and optical (uv-visible spectroscopy (UV-Vis) proprieties were investigated for all synthesized perovskites as a function of the MA/FA ratio. The (XRD) analysis shows the formation of a cubic-phase perovskite with space group Pm-3 m in the composition range 0 <= x <= 1. High absorbance levels were obtained in the infrared region 500-900 nm for mixed perovskites FAMAPbBr(3). The estimated energy band-gap from the absorbance spectral measurements for FAMAPbBr(3) thin films was in the range of 2.2 eV for FAPbBr(3) and 2.3 eV for MAPbBr(3), respectively. The photoluminescence emission of mixed FA/MA perovskite thin films was located in intermediate values between 580 nm and 555 nm. es_ES
dc.description.sponsorship Nanomaterials and Systems Laboratory for Renewable Energies, Research and Technology Center of Energy Technoparc Borj Cedria for financial support. This work was supported by the Ministerio de Economia y Competitividad (ENE2013-46624-C4-4-R) and the Generalitat Valenciana (Prometeus 2014/044). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Electronic Materials es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Organic-inorganic es_ES
dc.subject Hybrid perovskite es_ES
dc.subject High absorbance es_ES
dc.subject Photoluminescence es_ES
dc.subject X-ray techniques es_ES
dc.subject Thin films es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Thin Film of Perovskite (Mixed-Cation of Lead Bromide FA(1-x)MA(x)PbBr) Obtained by One-Step Method es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11664-019-07638-0 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F044/ES/Técnicas de Fabricación Avanzada y Control de Calidad de nuevos materiales multifuncionales en movilidad sostenible/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2013-46624-C4-4-R/ES/MEJORA DE LA CONVERSION DE ENERGIA SOLAR MEDIANTE PROCESOS DE EXCITACION ELECTRONICA EN DOS ETAPAS. APROXIMACION ELECTROQUIMICA./ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Slimi, B.; Mollar García, MA.; Marí, B.; Chtourou, R. (2019). Thin Film of Perovskite (Mixed-Cation of Lead Bromide FA(1-x)MA(x)PbBr) Obtained by One-Step Method. Journal of Electronic Materials. 48(12):8014-8023. https://doi.org/10.1007/s11664-019-07638-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11664-019-07638-0 es_ES
dc.description.upvformatpinicio 8014 es_ES
dc.description.upvformatpfin 8023 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 48 es_ES
dc.description.issue 12 es_ES
dc.relation.pasarela S\394017 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.contributor.funder Ministère de l'Enseignement Supérieur et de la Recherche Scientifique, Túnez es_ES
dc.description.references D. Bi, W. Tress, I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J. Baena, J. Decoppet, S. Zakeeruddin, M. Nazeeruddin, M. Grätzel, and A. Hagfeldt, Sci. Adv. 2, 1501170 (2016). es_ES
dc.description.references M.A. Green and A. Ho-Baillie, ACS Energy Lett. 2, 822 (2017). es_ES
dc.description.references M.A. Green, A. Ho-Baillie, and H.J. Snaith, Nat. Photonics 8, 506 (2014). es_ES
dc.description.references M. Liu, M.B. Johnston, and H.J. Snaith, Nature 501, 395–398 (2013). es_ES
dc.description.references Y. Wu, A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng, and L. Han, Energy Environ. Sci. 7, 2934–2938 (2014). es_ES
dc.description.references W. Zhang, M. Saliba, D.T. Moore, S.K. Pathak, M.T. Horantner, T. Stergiopoulos, S.D. Stranks, G.E. Eperon, J.A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R.H. Friend, L.A. Estroff, U. Wiesner, and H.J. Snaith, Nat. Commun. 6, 6142 (2015). es_ES
dc.description.references P. Gonzalez-Pedro, V. Juarez-Perez, E.J. Arsyad, W.S. Barea, E.M. Fabregat-Santiago, F. Morasero, and I. Bisquert, Nano Lett. 14, 888–893 (2014). es_ES
dc.description.references S.D. Adinolfi, V. Comin, R. Yuan, M. Alarousu, E. Buin, A. Chen, Y. Hoogland, S. Rothenberger, A. Katsiev, and K. Low, Sciences 347, 519–522 (2015). es_ES
dc.description.references W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok, Sciences 348, 1234 (2015). es_ES
dc.description.references B. Slimi, M. Mollar, I. Ben Assaker, A. Kriaa, R. Chtourou, and B. Marí, Energy Procedia 102, 87–95 (2016). es_ES
dc.description.references O. Knop, R.E. Wasylishen, M.A. White, T.S. Cameron, M.J. Vanoort, and M. Can, J. Chem. Rev. Can. Chim. 68, 412 (1990). es_ES
dc.description.references J.H. Heo, D.H. Song, and S.H. Im, Adv. Mater. 26, 8179 (2014). es_ES
dc.description.references B. Slimi, M. Mollar, I. Ben Assaker, A. Kriaa, R. Chtourou, and B. Marı, Monatsh. Chem. 148, 835–844 (2017). es_ES
dc.description.references G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, and H.J. Snaith, Energy Environ. Sci. 7, 982–988 (2014). es_ES
dc.description.references A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009). es_ES
dc.description.references Y. Hou, X. Du, S. Scheiner, D.P. Mc Meekin, Z. Wang, N. Li, M.S. Killian, H. Chen, M. Richter, I. Levchuk, N. Schrenker, E. Spiecker, T. Stubhan, N.A. Luechinger, A. Hirsch, P. Schmuki, H.P. Steinrück, R.H. Fink, M. Halik, H.J. Snaith, and C.J. Brabec, Sciences 358, 1192 (2017). es_ES
dc.description.references Y. Wang, J. Wu, P. Zhang, D. Liu, T. Zhang, L. Ji, X. Gu, Z.D. Chen, and S. Li, Nano Energy 39, 616 (2017). es_ES
dc.description.references W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, and S.I.I. Seok, Sciences 348, 1234–1237 (2015). es_ES
dc.description.references A. Binek, F.C. Hanusch, P. Docampo, and T. Bein, J. Phys. Chem. Lett. 6, 1249–1253 (2015). es_ES
dc.description.references M.B. Johnston and L.M. Herz, Acc. Chem. Res. 49, 146–154 (2016). es_ES
dc.description.references L. Dou, Y.M. Yang, J. You, W. Chang, G. Li, Z. Hong, and Y. Yang, Nat. Commun. 5, 1–6 (2014). es_ES
dc.description.references B. Náfrádi, G. Náfrádi, L. Forró, and E. Horváth, J. Phys. Chem. C 119, 25204–25208 (2015). es_ES
dc.description.references Z. Xiao, R.A. Kerner, L. Zhao, N.L. Tran, K.M. Lee, T.W. Koh, G.D. Scholes, and B.P. Rand, Nat. Photonics 11, 108–115 (2017). es_ES
dc.description.references H. Cho, S.H. Jeong, M.H. Park, Y.H. Kim, C. Wolf, C.L. Lee, J.H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S.H. Im, R.H. Friend, and T.W. Lee, Science 350, 1222–1225 (2015). es_ES
dc.description.references M. Yuan, L.N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E.M. Beauregard, P. Kanjanaboos, Z. Lu, D.H. Kim, and E.H. Sargent, Nat. Nanotechnol. 11, 1–27 (2016). es_ES
dc.description.references J. Kim, S.H. Lee, J.H. Lee, and K.H. Hong, J. Phys. Chem. Lett. 5, 1312–1317 (2014). es_ES
dc.description.references H. Fang, F. Wang, S. Adjokatse, N. Zhao, J. Even, and M. Antonietta Loi, Light Sci. Appl. 5, e16056 (2015). es_ES
dc.description.references C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, and L.M. Herz, Adv. Mater. 26, 1584–1589 (2014). es_ES
dc.description.references C.S. Ponseca, T.J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.P. Wolf, and V. Sundström, J. Am. Chem. Soc. 136, 5189–5192 (2014). es_ES
dc.description.references T.M. Koh, K. Fu, Y. Fang, S. Chen, T.C. Sum, N. Mathews, S.C. Mhaisalkar, P.P. Boix, and T. Baikie, J. Phys. Chem. C 118, 16458–16462 (2014). es_ES
dc.description.references S.N. Habisreutinger, D.P. Mcmeekin, H.J. Snaith, and R.J. Nicholas, APL Mater. 4, 091503 (2016). es_ES
dc.description.references D.P. McMeekin, G. Sadoughi, W. Rehman, G.E. Eperon, M. Saliba, M.T. Hörantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M.B. Johnston, L.M. Herz, and H.J. Snaith, Sciences 351, 151–155 (2016). es_ES
dc.description.references Z. Wang, D.P. Mc Meekin, N. Sakai, S.V. Reenen, K. Wojciechowski, J.B. Patel, M.B. Johnston, and H.J. Snaith, Adv. Mater. 29, 1604186 (2017). es_ES
dc.description.references J.P.C. Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T.J. Jacobsson, A.R.S. Kandada, S.M. Zakeeruddin, A. Petrozza, A. Abate, M.K. Nazeeruddin, M. Graetzel, and H. Feldt, Energy Environ. Sci. 8, 2928 (2015). es_ES
dc.description.references N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok, Nature 517, 476 (2015). es_ES
dc.description.references T.J. Jacobsson, J.P. Correa-Baena, M. Pazoki, M. Saliba, K. Schenk, M. Gratzel, and H. Feldt, Energy Environ. Sci. 9, 1706 (2016). es_ES
dc.description.references T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, M. Graetzel, and T.J. White, J. Mater. Chem. A 1, 5628–5641 (2013). es_ES
dc.description.references J.R. Carvajal, Newsletter 26, 12–19 (2000). es_ES
dc.description.references O. Chen, H. Zhou, Z. Hong, S. Luo, H.S. Duan, H.H. Wang, Y. Liu, G. Li, and Y.J. Yang, Chem. Soc. 136, 622 (2014). es_ES
dc.description.references J.H.C. Im, R. Lee, J.W. Lee, S.W. Park, and N.G. Park, Nanoscale 3, 4088 (2011). es_ES
dc.description.references D. Liu and T.L. Kelly, Nat. Photonics 8, 133 (2014). es_ES
dc.description.references L. Chen, Y.Y. Tan, Z.X. Chen, T. Wang, S. Hu, Z.A. Nan, L.O. Xie, Y. Hui, J.X. Huang, C. Zhan, S.H. Wang, J.Z. Zhou, J.W. Yan, B.W. Mao, and Z.O. Tian, J. Am. Chem. Soc. 8b11610, 1–15 (2019). es_ES
dc.description.references T. Matsui, J.Y. Seo, M. Saliba, S.M. Zakeeruddin, and M. Gratzel, Adv. Mater. 29, 1606258 (2017). es_ES
dc.description.references P. Scherrer, Math. Phys. 2, 98–100 (1918). es_ES
dc.description.references N. Giesbrecht, J. Schlipf, L. Oesinghaus, A. Binek, T. Bein, P. Müller-Buschbaum, and P. Docampo, ACS. Energy. Lett. 1, 150–154 (2016). es_ES
dc.description.references Z. Yang, C.C. Chueh, P.W. Liang, M. Crump, F. Lin, Z. Zhu, and A.K.Y. Jen, Nano Energy 22, 328 (2016). es_ES
dc.description.references T. Zhao, H. Liu, M.E. Ziffer, A. Rajagopal, L. Zuo, D.S. Ginger, X. Li, and A.K.Y. Jen, ACS Energy Lett. 3, 1662–1669 (2018). es_ES
dc.description.references Y.H. Kim, H. Cho, J.H. Heo, T.S. Kim, N. Myoung, C.L. Lee, S.H. Im, and T.W. Lee, Adv. Mater. 27, 1248–1254 (2015). es_ES
dc.description.references C. Chen, X. Hu, W. Lu, S. Chang, L. Shi, L. Li, H. Zhong, and J.B. Han, J. Phys. D Appl. Phys. 51, 045105 (2018). es_ES
dc.description.references J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, and S.I. Seok, Nano Lett. 13, 1764–1769 (2013). es_ES
dc.description.references F. Zhang, B. Yang, K. Zheng, S. Yang, Y. Li, W. Deng, and R. He, Nano-Micro Lett. 10, 43 (2018). es_ES
dc.description.references O.D. Miller, E. Yablonovitch, and S.R. Kurtz, IEEE J. Photovolt. 2, 303 (2012). es_ES
dc.description.references O.J. Weber, B. Charles, and M.T. Weller, J. Mater. Chem. A4, 15375–15382 (2016). es_ES
dc.description.references J. Yan, X. Ke, Y. Chen, A. Zhang, and B. Zhang, Appl. Surf. Sci. 351, 1191–1196 (2015). es_ES
dc.description.references T. Etienne, E. Mosconi, and F. De Angelis, J. Phys. Chem. Lett. 7, 1638–1645 (2016). es_ES
dc.description.references B. Zhao, M. Abdi-Jalebi, M. Tabachnyk, H. Glass, V.S. Kamboj, W. Nie, A.J. Pearson, Y. Puttisong, K.C. Gödel, H.E. Beere, D.A. Ritchie, A.D. Mohite, S.E. Dutton, R.H. Friend, and A. Sadhanala, Adv. Mater. 29, 1604744 (2017). es_ES
dc.description.references X. Fang, K. Zhang, Y. Li, L. Yao, Y. Zhang, Y. Wang, W. Zhai, L. Tao, H. Du, and G. Ran, Appl. Phys. Lett. 108, 071109 (2016). es_ES
dc.description.references S. Chen, Y.I. Hou, H.A. Chen, X. Tang, S. Langner, N. Li, T. Stubhan, I. Levchuk, E. Gu, A. Osvet, and C.J. Brabec, Adv. Energy Mater. 1701543, 1–8 (2017). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem