- -

Paraphrase Plagiarism Identifcation with Character-level Features

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Paraphrase Plagiarism Identifcation with Character-level Features

Show full item record

Sánchez-Vega, F.; Villatoro-Tello, E.; Montes-Y-Gómez, M.; Rosso, P.; Stamatatos, E.; Villaseñor-Pineda, L. (2019). Paraphrase Plagiarism Identifcation with Character-level Features. Pattern Analysis and Applications. 22(2):669-681. https://doi.org/10.1007/s10044-017-0674-z

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159992

Files in this item

Item Metadata

Title: Paraphrase Plagiarism Identifcation with Character-level Features
Author: Sánchez-Vega, Fernando Villatoro-Tello, Esaú Montes-y-Gómez, Manuel Rosso, Paolo Stamatatos, Efstathios Villaseñor-Pineda, Luis
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Issued date:
Abstract:
[EN] Several methods have been proposed for determining plagiarism between pairs of sentences, passages or even full documents. However, the majority of these methods fail to reliably detect paraphrase plagiarism due to ...[+]
Subjects: Plagiarism identification , Paraphrase plagiarism , Text reuse , Character n-grams , Stylistic representation
Copyrigths: Reserva de todos los derechos
Source:
Pattern Analysis and Applications. (issn: 1433-7541 )
DOI: 10.1007/s10044-017-0674-z
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s10044-017-0674-z
Project ID:
CONACYT/FC 2016-2410
...[+]
CONACYT/FC 2016-2410
CONACYT/258588
CONACYT/258345/224483
COMISION DE LAS COMUNIDADES EUROPEA/269180
GENERALITAT VALENCIANA/PROMETEOII/2014/030
MINISTERIO DE ECONOMIA Y EMPRESA/TIN2015-71147-C2-1-P
[-]
Thanks:
This work is the result of the collaboration in the framework of the CONACYT Thematic Networks program (RedTTL Language Technologies Network) and the WIQ-EI IRSES project (Grant No. 269180) within the FP7 Marie Curie action. ...[+]
Type: Artículo

This item appears in the following Collection(s)

Show full item record