Mostrar el registro sencillo del ítem
dc.contributor.author | Barrera, David | es_ES |
dc.contributor.author | Madrigal-Madrigal, Javier | es_ES |
dc.contributor.author | Delepine-Lesoille, Sylvie | es_ES |
dc.contributor.author | Sales Maicas, Salvador | es_ES |
dc.date.accessioned | 2021-01-27T04:33:12Z | |
dc.date.available | 2021-01-27T04:33:12Z | |
dc.date.issued | 2019-09-30 | es_ES |
dc.identifier.issn | 1094-4087 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160006 | |
dc.description | © 2019 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited. | es_ES |
dc.description.abstract | [EN] We have designed and implemented a fiber optic shape sensor for high-energy ionizing environments based on multicore optical fibers. We inscribed two fiber Bragg gratings arrays in a seven-core optical fiber. One of the arrays has been inscribed in a hydrogen-loaded fiber and the other one in an unloaded fiber in order to have two samples with very different radiation sensitivity. The two samples were coiled in a metallic circular structure and were exposed to gamma radiation. We have analyzed the permanent radiation effects. The radiation-induced Bragg wavelength shift (RI-BWS) in the hydrogen-loaded fiber is near ten times higher than the one observed for the unloaded fiber, with a maximum wavelength shift of 415 pm. However, the use of the multiple cores permits to make these sensors immune to RI-BWS obtaining a similar curvature error in both samples of approximately 1 cm without modifying the composition of the fiber, pre-irradiation or thermal treatment. | es_ES |
dc.description.sponsorship | Ministerio de Economia y Competitividad (DIMENSION TEC2017 88029- R); Generalitat Valenciana (IDI/FEDER/2018, PROMETEO 2017/103); H2020 Marie Sklodowska-Curie Actions (MSCA-ITN-ETN-722509); Universitat Politecnica de Valencia (PAID-01-18); Ministerio de Ciencia, Innovacion y Universidades (IJCI-2017-32476). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Optical Society | es_ES |
dc.relation.ispartof | Optics Express | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Multicore optical fiber shape sensors suitable for use under gamma radiation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1364/OE.27.029026 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/722509/EU/Fibre Nervous Sensing Systems/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-01-18/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//IJCI-2017-32476/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F103/ES/TECNOLOGIAS Y APLICACIONES FUTURAS DE LA FOTONICA DE MICROONDAS (FUTURE MWP TECHNOLOGIES & APPLICATIONS)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2017-88029-R/ES/DISPOTIVOS EN FIBRAS ESPECIALES MULTIMODO%2FMULTINUCLEO PARA REDES DE COMUNICACIONES Y APLICACIONES DE SENSORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2FA%2F031/ES/ADVANCED INSTRUMENTATION FOR WORLD CLASS MICROWAVE PHOTONICS RESEARCH/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Barrera, D.; Madrigal-Madrigal, J.; Delepine-Lesoille, S.; Sales Maicas, S. (2019). Multicore optical fiber shape sensors suitable for use under gamma radiation. Optics Express. 27(20):29026-29033. https://doi.org/10.1364/OE.27.029026 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1364/OE.27.029026 | es_ES |
dc.description.upvformatpinicio | 29026 | es_ES |
dc.description.upvformatpfin | 29033 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 27 | es_ES |
dc.description.issue | 20 | es_ES |
dc.identifier.pmid | 31684644 | es_ES |
dc.relation.pasarela | S\406824 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Bandyopadhyay, S., Canning, J., Stevenson, M., & Cook, K. (2008). Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm. Optics Letters, 33(16), 1917. doi:10.1364/ol.33.001917 | es_ES |
dc.description.references | Barrera, D., Finazzi, V., Villatoro, J., Sales, S., & Pruneri, V. (2012). Packaged Optical Sensors Based on Regenerated Fiber Bragg Gratings for High Temperature Applications. IEEE Sensors Journal, 12(1), 107-112. doi:10.1109/jsen.2011.2122254 | es_ES |
dc.description.references | Huang, J.-Y., Van Roosbroeck, J., Vlekken, J., Martinez, A. B., Geernaert, T., Berghmans, F., … Caucheteur, C. (2017). FBGs written in specialty fiber for high pressure/high temperature measurement. Optics Express, 25(15), 17936. doi:10.1364/oe.25.017936 | es_ES |
dc.description.references | Gusarov, A. I., Berghmans, F., Deparis, O., Fernandez, A. F., Defosse, Y., Megret, P., … Blondel, M. (1999). High total dose radiation effects on temperature sensing fiber Bragg gratings. IEEE Photonics Technology Letters, 11(9), 1159-1161. doi:10.1109/68.784237 | es_ES |
dc.description.references | Perry, M., Niewczas, P., & Johnston, M. (2012). Effects of Neutron-Gamma Radiation on Fiber Bragg Grating Sensors: A Review. IEEE Sensors Journal, 12(11), 3248-3257. doi:10.1109/jsen.2012.2214030 | es_ES |
dc.description.references | Girard, S., Morana, A., Ladaci, A., Robin, T., Mescia, L., Bonnefois, J.-J., … Boukenter, A. (2018). Recent advances in radiation-hardened fiber-based technologies for space applications. Journal of Optics, 20(9), 093001. doi:10.1088/2040-8986/aad271 | es_ES |
dc.description.references | Gusarov, A., & Hoeffgen, S. K. (2013). Radiation Effects on Fiber Gratings. IEEE Transactions on Nuclear Science, 60(3), 2037-2053. doi:10.1109/tns.2013.2252366 | es_ES |
dc.description.references | Morana, A., Girard, S., Marin, E., Marcandella, C., Paillet, P., Périsse, J., … Ouerdane, Y. (2014). Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels. Optics Letters, 39(18), 5313. doi:10.1364/ol.39.005313 | es_ES |
dc.description.references | Morana, A., Girard, S., Marin, E., Lancry, M., Marcandella, C., Paillet, P., … Ouerdane, Y. (2015). Influence of photo-inscription conditions on the radiation-response of fiber Bragg gratings. Optics Express, 23(7), 8659. doi:10.1364/oe.23.008659 | es_ES |
dc.description.references | Gusarov, A. I., Berghmans, F., Fernandez, A. F., Deparis, O., Defosse, Y., Starodubov, D., … Bondel, M. (2000). Behavior of fibre Bragg gratings under high total dose gamma radiation. IEEE Transactions on Nuclear Science, 47(3), 688-692. doi:10.1109/23.856499 | es_ES |
dc.description.references | Flockhart, G. M. H., MacPherson, W. N., Barton, J. S., Jones, J. D. C., Zhang, L., & Bennion, I. (2003). Two-axis bend measurement with Bragg gratings in multicore optical fiber. Optics Letters, 28(6), 387. doi:10.1364/ol.28.000387 | es_ES |
dc.description.references | Barrera, D., Gasulla, I., & Sales, S. (2015). Multipoint Two-Dimensional Curvature Optical Fiber Sensor Based on a Nontwisted Homogeneous Four-Core Fiber. Journal of Lightwave Technology, 33(12), 2445-2450. doi:10.1109/jlt.2014.2366556 | es_ES |
dc.description.references | Blanchet, T., Morana, A., Laffont, G., Cotillard, R., Marin, E., Boukenter, A., … Girard, S. (2018). Radiation Effects on Type I Fiber Bragg Gratings: Influence of Recoating and Irradiation Conditions. Journal of Lightwave Technology, 36(4), 998-1004. doi:10.1109/jlt.2018.2791640 | es_ES |
dc.description.references | Tosi, D. (2017). Review and Analysis of Peak Tracking Techniques for Fiber Bragg Grating Sensors. Sensors, 17(10), 2368. doi:10.3390/s17102368 | es_ES |
dc.description.references | Moore, J. P., & Rogge, M. D. (2012). Shape sensing using multi-core fiber optic cable and parametric curve solutions. Optics Express, 20(3), 2967. doi:10.1364/oe.20.002967 | es_ES |
dc.description.references | Floris, I., Sales, S., Calderón, P. A., & Adam, J. M. (2019). Measurement uncertainty of multicore optical fiber sensors used to sense curvature and bending direction. Measurement, 132, 35-46. doi:10.1016/j.measurement.2018.09.033 | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |