- -

Reverse engineering applied to biomodelling and pathological bone manufacturing using FDM technology

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reverse engineering applied to biomodelling and pathological bone manufacturing using FDM technology

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Laura Piles es_ES
dc.contributor.author Miguel J. Reig es_ES
dc.contributor.author Vte. Jesús Seguí es_ES
dc.contributor.author Rafael Pla es_ES
dc.contributor.author Fernando Martínez es_ES
dc.contributor.author José Miguel Seguí es_ES
dc.date.accessioned 2021-01-28T04:31:26Z
dc.date.available 2021-01-28T04:31:26Z
dc.date.issued 2019 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160074
dc.description.abstract [EN] Reverse engineering and medical image-based modeling technologies allow manufacturing of 3D biomodels of anatomical structures of human body. These techniques are based on anatomical information from scanning data such as CT and MRI, whose scanners are used for scanning data acquisition of the external and internal geometry of anatomical structures. These 3D biomodels have many medical applications such surgical training, preoperative planning, surgical simulation, diagnosis and treatments. 3D virtual models of human body structures based on CT are increasingly being used in clinical practice. A data processing methodology is required to obtain an accurate 3D model suitable for manufacturing using AM, and specially the FDM technologies. This study shows a step-by-step methodology to process the CT information in bounded uncertainty conditions in order to obtain the STL models of the degenerated bone components, and to manufacture the 3D biomodels for surgery analysis with optimal design and details, and with an adequate accuracy to ensure proper results by surgeons analysis. es_ES
dc.description.sponsorship The authors wish to acknowledge the support of Ms. Jerica Risent and Mr. Joan Ortiz of Ford Motor Company for his assistance in the scanning of printed models. This work was supported by the Polisabio Funding (UPV-Fisabio 2017) es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Procedia Manufacturing es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject FDM es_ES
dc.subject Reverse Engineering es_ES
dc.subject CT Data es_ES
dc.subject Bones es_ES
dc.subject Image Processing es_ES
dc.subject Modeling Techniques es_ES
dc.subject 3D Printing es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.title Reverse engineering applied to biomodelling and pathological bone manufacturing using FDM technology es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1016/j.promfg.2019.09.065 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//UPV-FISABIO-2017-003-1606/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Laura Piles; Miguel J. Reig; Vte. Jesús Seguí; Rafael Pla; Fernando Martínez; José Miguel Seguí (2019). Reverse engineering applied to biomodelling and pathological bone manufacturing using FDM technology. Procedia Manufacturing. 41:739-746. https://doi.org/10.1016/j.promfg.2019.09.065 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 8th Manufacturing Engineering Society International Conference (MESIC 2019) es_ES
dc.relation.conferencedate Junio 19-21,2019 es_ES
dc.relation.conferenceplace Madrid, España es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.promfg.2019.09.065 es_ES
dc.description.upvformatpinicio 739 es_ES
dc.description.upvformatpfin 746 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 41 es_ES
dc.identifier.eissn 2351-9789 es_ES
dc.relation.pasarela S\405298 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Van Eijnatten, M., Berger, F. H., de Graaf, P., Koivisto, J., Forouzanfar, T., & Wolff, J. (2017). Influence of CT parameters on STL model accuracy. Rapid Prototyping Journal, 23(4), 678-685. doi:10.1108/rpj-07-2015-0092 es_ES
dc.description.references Lalone, E. A., Willing, R. T., Shannon, H. L., King, G. J. W., & Johnson, J. A. (2015). Accuracy assessment of 3D bone reconstructions using CT: an intro comparison. Medical Engineering & Physics, 37(8), 729-738. doi:10.1016/j.medengphy.2015.04.010 es_ES
dc.description.references Stull, K. E., Tise, M. L., Ali, Z., & Fowler, D. R. (2014). Accuracy and reliability of measurements obtained from computed tomography 3D volume rendered images. Forensic Science International, 238, 133-140. doi:10.1016/j.forsciint.2014.03.005 es_ES
dc.description.references Van Eijnatten, M., van Dijk, R., Dobbe, J., Streekstra, G., Koivisto, J., & Wolff, J. (2018). CT image segmentation methods for bone used in medical additive manufacturing. Medical Engineering & Physics, 51, 6-16. doi:10.1016/j.medengphy.2017.10.008 es_ES
dc.description.references Javaid, M., & Haleem, A. (2018). Additive manufacturing applications in medical cases: A literature based review. Alexandria Journal of Medicine, 54(4), 411-422. doi:10.1016/j.ajme.2017.09.003 es_ES
dc.description.references D.V.C. Stoffelen, K. Eraly, P. Debeer, The use of 3D printing technology in reconstruction of a severe glenoid defect: a case report with 2.5 years of follow-up, Journal of Shoulder Elbow Surgery, 24 (2015) e218-e222 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem