- -

Temporal variability analysis reveals biases in electronic health records due to hospital process reengineering interventions over seven years

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Temporal variability analysis reveals biases in electronic health records due to hospital process reengineering interventions over seven years

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Perez-Benito, Francisco Javier es_ES
dc.contributor.author Sáez Silvestre, Carlos es_ES
dc.contributor.author Conejero, J. Alberto es_ES
dc.contributor.author Tortajada, Salvador es_ES
dc.contributor.author Valdivieso, Bernardo es_ES
dc.contributor.author Garcia-Gomez, Juan M es_ES
dc.date.accessioned 2021-01-28T04:31:38Z
dc.date.available 2021-01-28T04:31:38Z
dc.date.issued 2019-08-07 es_ES
dc.identifier.issn 1932-6203 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160077
dc.description.abstract [EN] Objective To evaluate the effects of Process-Reengineering interventions on the Electronic Health Records (EHR) of a hospital over 7 years. Materials and methods Temporal Variability Assessment (TVA) based on probabilistic data quality assessment was applied to the historic monthly-batched admission data of Hospital La Fe Valencia, Spain from 2010 to 2016. Routine healthcare data with a complete EHR was expanded by processed variables such as the Charlson Comorbidity Index. Results Four Process-Reengineering interventions were detected by quantifiable effects on the EHR: (1) the hospital relocation in 2011 involved progressive reduction of admissions during the next four months, (2) the hospital services re-configuration incremented the number of inter-services transfers, (3) the care-services re-distribution led to transfers between facilities (4) the assignment to the hospital of a new area with 80,000 patients in 2015 inspired the discharge to home for follow up and the update of the pre-surgery planned admissions protocol that produced a significant decrease of the patient length of stay. Discussion TVA provides an indicator of the effect of process re-engineering interventions on healthcare practice. Evaluating the effect of facilities¿ relocation and increment of citizens (findings 1, 3¿4), the impact of strategies (findings 2¿3), and gradual changes in protocols (finding 4) may help on the hospital management by optimizing interventions based on their effect on EHRs or on data reuse. Conclusions The effects on hospitals EHR due to process re-engineering interventions can be evaluated using the TVA methodology. Being aware of conditioned variations in EHR is of the utmost importance for the reliable reuse of routine hospitalization data. es_ES
dc.description.sponsorship F.J.P.B, C.S., J.M.G.G. and J.A.C. were funded Universitat Politecnica de Valencia, project "ANALISIS DE LA CALIDAD Y VARIABILIDAD DE DATOS MEDICOS". www.upv.es. J.M.G.G.is also partially supported by: Ministerio de Economia y Competitividad of Spain through MTS4up project (National Plan for Scientific and Technical Research and Innovation 2013-2016, No. DPI2016-80054-R); and European Commission projects H2020-SC1-2016-CNECT Project (No. 727560) and H2020-SC1-BHC-2018-2020 (No. 825750). The funders did not play any role in the study design, data collection and analysis, decision to publish, nor preparation of the manuscript. es_ES
dc.language Inglés es_ES
dc.publisher Public Library of Science es_ES
dc.relation.ispartof PLoS ONE es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title Temporal variability analysis reveals biases in electronic health records due to hospital process reengineering interventions over seven years es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.pone.0220369 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/727560/EU/Collective wisdom driving public health policies/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2016-80054-R/ES/BIOMARCADORES DINAMICOS BASADOS EN FIRMAS TISULARES MULTIPARAMETRICAS PARA EL SEGUIMIENTO Y EVALUACION DE LA RESPUESTA A TRATAMIENTO DE PACIENTES CON GLIOBLASTOMA Y CANCER DE PRÓSTATA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/825750/EU/Patient-centred pathways of early palliative care, supportive ecosystems and appraisal standard/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Perez-Benito, FJ.; Sáez Silvestre, C.; Conejero, JA.; Tortajada, S.; Valdivieso, B.; Garcia-Gomez, JM. (2019). Temporal variability analysis reveals biases in electronic health records due to hospital process reengineering interventions over seven years. PLoS ONE. 14(8):1-19. https://doi.org/10.1371/journal.pone.0220369 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1371/journal.pone.0220369 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 8 es_ES
dc.identifier.pmid 31390350 es_ES
dc.identifier.pmcid PMC6685618 es_ES
dc.relation.pasarela S\393366 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Aguilar-Savén, R. S. (2004). Business process modelling: Review and framework. International Journal of Production Economics, 90(2), 129-149. doi:10.1016/s0925-5273(03)00102-6 es_ES
dc.description.references Poulymenopoulou, M. (2003). Journal of Medical Systems, 27(4), 325-335. doi:10.1023/a:1023701219563 es_ES
dc.description.references Dadam P, Reichert M, Kuhn K. Clinical Workflows -The Killer Application for Process-oriented Information Systems? Proceedings of the 4th International Conference on Business Information Systems. London: Springer London; 2000. pp. 36–59. doi: https://doi.org/10.1007/978-1-4471-0761-3 es_ES
dc.description.references Lenz, R., & Reichert, M. (2007). IT support for healthcare processes – premises, challenges, perspectives. Data & Knowledge Engineering, 61(1), 39-58. doi:10.1016/j.datak.2006.04.007 es_ES
dc.description.references Rebuge, Á., & Ferreira, D. R. (2012). Business process analysis in healthcare environments: A methodology based on process mining. Information Systems, 37(2), 99-116. doi:10.1016/j.is.2011.01.003 es_ES
dc.description.references Amour EAEH, Ghannouchi SA. Applying Data Mining Techniques to Discover KPIs Relationships in Business Process Context. 2017 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT). IEEE; 2017. pp. 230–237. doi: https://doi.org/10.1109/PDCAT.2017.00045 es_ES
dc.description.references Chou, Y.-C., Chen, B.-Y., Tang, Y.-Y., Qiu, Z.-J., Wu, M.-F., Wang, S.-C., … Chuang, W.-C. (2010). Prescription-Filling Process Reengineering of an Outpatient Pharmacy. Journal of Medical Systems, 36(2), 893-902. doi:10.1007/s10916-010-9553-5 es_ES
dc.description.references Leu, J.-D., & Huang, Y.-T. (2009). An Application of Business Process Method to the Clinical Efficiency of Hospital. Journal of Medical Systems, 35(3), 409-421. doi:10.1007/s10916-009-9376-4 es_ES
dc.description.references Gand K. Investigating on Requirements for Business Model Representations: The Case of Information Technology in Healthcare. 2017 IEEE 19th Conference on Business Informatics (CBI). IEEE; 2017. pp. 471–480. doi: https://doi.org/10.1109/CBI.2017.36 es_ES
dc.description.references Ferreira, G. S. A., Silva, U. R., Costa, A. L., & Pádua, S. I. D. de D. (2018). The promotion of BPM and lean in the health sector: main results. Business Process Management Journal, 24(2), 400-424. doi:10.1108/bpmj-06-2016-0115 es_ES
dc.description.references Abdulrahman Jabour RM. Cancer Reporting: Timeliness Analysis and Process. 2016; Available: https://search.proquest.com/openview/4ecf737c5ef6d2d503e948df8031fe54/1?pq-origsite=gscholar&cbl=18750&diss=y es_ES
dc.description.references Hewitt M, Simone J V. Enhancing Data Systems to Improve the Quality of Cancer Care [Internet]. National Academy Press; 2000. Available: http://www.nap.edu/catalog/9970.html es_ES
dc.description.references Weiskopf, N. G., & Weng, C. (2013). Methods and dimensions of electronic health record data quality assessment: enabling reuse for clinical research. Journal of the American Medical Informatics Association, 20(1), 144-151. doi:10.1136/amiajnl-2011-000681 es_ES
dc.description.references Saez C, Robles M, Garcia-Gomez JM. Comparative study of probability distribution distances to define a metric for the stability of multi-source biomedical research data. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. IEEE; 2013. pp. 3226–3229. doi: https://doi.org/10.1109/EMBC.2013.6610228 es_ES
dc.description.references Sáez, C., Rodrigues, P. P., Gama, J., Robles, M., & García-Gómez, J. M. (2014). Probabilistic change detection and visualization methods for the assessment of temporal stability in biomedical data quality. Data Mining and Knowledge Discovery, 29(4), 950-975. doi:10.1007/s10618-014-0378-6 es_ES
dc.description.references Sáez, C., Zurriaga, O., Pérez-Panadés, J., Melchor, I., Robles, M., & García-Gómez, J. M. (2016). Applying probabilistic temporal and multisite data quality control methods to a public health mortality registry in Spain: a systematic approach to quality control of repositories. Journal of the American Medical Informatics Association, 23(6), 1085-1095. doi:10.1093/jamia/ocw010 es_ES
dc.description.references International Ethical Guidelines for Epidemiological Studies [Internet]. Geneva: Council for International Organizations of Medical Sciences (CIOMS) in collaboration with the World Health Organization; 2009. Available: https://cioms.ch/wp-content/uploads/2017/01/International_Ethical_Guidelines_LR.pdf es_ES
dc.description.references Research Ethics Committee of the Universitari i Politècnic La Fe Hospital [Internet]. Available: https://www.iislafe.es/en/research/ethics-committees/ es_ES
dc.description.references Charlson, M. E., Pompei, P., Ales, K. L., & MacKenzie, C. R. (1987). A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. Journal of Chronic Diseases, 40(5), 373-383. doi:10.1016/0021-9681(87)90171-8 es_ES
dc.description.references Schneeweiss, S., Wang, P. S., Avorn, J., & Glynn, R. J. (2003). Improved Comorbidity Adjustment for Predicting Mortality in Medicare Populations. Health Services Research, 38(4), 1103-1120. doi:10.1111/1475-6773.00165 es_ES
dc.description.references Quan, H., Sundararajan, V., Halfon, P., Fong, A., Burnand, B., Luthi, J.-C., … Ghali, W. A. (2005). Coding Algorithms for Defining Comorbidities in ICD-9-CM and ICD-10 Administrative Data. Medical Care, 43(11), 1130-1139. doi:10.1097/01.mlr.0000182534.19832.83 es_ES
dc.description.references Sáez Silvestre C. Probabilistic methods for multi-source and temporal biomedical data quality assessment [Internet]. Thesis. Universitat Politècnica de València. 2016. doi: https://doi.org/10.4995/Thesis/10251/62188 es_ES
dc.description.references Amari S, Nagaoka H. Methods of Information Geometry [Internet]. Amer. Math. Soc. and Oxford Univ. Press. American Mathematical Society; 2000. Available: https://books.google.es/books?hl=es&lr=&id=vc2FWSo7wLUC&oi=fnd&pg=PR7&dq=Methods+of+Information+geometry&ots=4HmyCCY4PX&sig=2-dpCuwMQvEC1iREjxdfIX0yEls#v=onepage&q=MethodsofInformationgeometry&f=false es_ES
dc.description.references Csiszár, I., & Shields, P. C. (2004). Information Theory and Statistics: A Tutorial. Foundations and Trends™ in Communications and Information Theory, 1(4), 417-528. doi:10.1561/0100000004 es_ES
dc.description.references Lin, J. (1991). Divergence measures based on the Shannon entropy. IEEE Transactions on Information Theory, 37(1), 145-151. doi:10.1109/18.61115 es_ES
dc.description.references M.Cover T. Elements Of Information Theory Notes [Internet]. 2006. Available: http://books.google.fr/books?id=VWq5GG6ycxMC&printsec=frontcover&dq=intitle:Elements+of+Information+Theory&hl=&cd=1&source=gbs_api%5Cnpapers2://publication/uuid/BAF426F8-5A4F-44A4-8333-FA8187160D9B es_ES
dc.description.references Brandes, U., & Pich, C. (s. f.). Eigensolver Methods for Progressive Multidimensional Scaling of Large Data. Lecture Notes in Computer Science, 42-53. doi:10.1007/978-3-540-70904-6_6 es_ES
dc.description.references Liaw, S. T., Rahimi, A., Ray, P., Taggart, J., Dennis, S., de Lusignan, S., … Talaei-Khoei, A. (2013). Towards an ontology for data quality in integrated chronic disease management: A realist review of the literature. International Journal of Medical Informatics, 82(1), 10-24. doi:10.1016/j.ijmedinf.2012.10.001 es_ES
dc.description.references Arts, D. G. T. (2002). Defining and Improving Data Quality in Medical Registries: A Literature Review, Case Study, and Generic Framework. Journal of the American Medical Informatics Association, 9(6), 600-611. doi:10.1197/jamia.m1087 es_ES
dc.description.references Bray, F., & Parkin, D. M. (2009). Evaluation of data quality in the cancer registry: Principles and methods. Part I: Comparability, validity and timeliness. European Journal of Cancer, 45(5), 747-755. doi:10.1016/j.ejca.2008.11.032 es_ES
dc.description.references Parkin, D. M., & Bray, F. (2009). Evaluation of data quality in the cancer registry: Principles and methods Part II. Completeness. European Journal of Cancer, 45(5), 756-764. doi:10.1016/j.ejca.2008.11.033 es_ES
dc.description.references Fernandez-Llatas, C., Ibanez-Sanchez, G., Celda, A., Mandingorra, J., Aparici-Tortajada, L., Martinez-Millana, A., … Traver, V. (2019). Analyzing Medical Emergency Processes with Process Mining: The Stroke Case. Lecture Notes in Business Information Processing, 214-225. doi:10.1007/978-3-030-11641-5_17 es_ES
dc.description.references Fernandez-Llatas, C., Lizondo, A., Monton, E., Benedi, J.-M., & Traver, V. (2015). Process Mining Methodology for Health Process Tracking Using Real-Time Indoor Location Systems. Sensors, 15(12), 29821-29840. doi:10.3390/s151229769 es_ES
dc.description.references Van der Aalst, W., Weijters, T., & Maruster, L. (2004). Workflow mining: discovering process models from event logs. IEEE Transactions on Knowledge and Data Engineering, 16(9), 1128-1142. doi:10.1109/tkde.2004.47 es_ES
dc.description.references Weijters AJMM, Van Der Aalst WMP, Alves De Medeiros AK. Process Mining with the HeuristicsMiner Algorithm [Internet]. Available: https://pdfs.semanticscholar.org/1cc3/d62e27365b8d7ed6ce93b41c193d0559d086.pdf es_ES
dc.description.references Shim, S. J., & Kumar, A. (2010). Simulation for emergency care process reengineering in hospitals. Business Process Management Journal, 16(5), 795-805. doi:10.1108/14637151011076476 es_ES
dc.description.references Svolba, G., & Bauer, P. (1999). Statistical Quality Control in Clinical Trials. Controlled Clinical Trials, 20(6), 519-530. doi:10.1016/s0197-2456(99)00029-x es_ES
dc.description.references Kahn, M. G., Raebel, M. A., Glanz, J. M., Riedlinger, K., & Steiner, J. F. (2012). A Pragmatic Framework for Single-site and Multisite Data Quality Assessment in Electronic Health Record-based Clinical Research. Medical Care, 50, S21-S29. doi:10.1097/mlr.0b013e318257dd67 es_ES
dc.description.references Batini, C., Cappiello, C., Francalanci, C., & Maurino, A. (2009). Methodologies for data quality assessment and improvement. ACM Computing Surveys, 41(3), 1-52. doi:10.1145/1541880.1541883 es_ES
dc.description.references Heinrich, B., Klier, M., & Kaiser, M. (2009). A Procedure to Develop Metrics for Currency and its Application in CRM. Journal of Data and Information Quality, 1(1), 1-28. doi:10.1145/1515693.1515697 es_ES
dc.description.references Sirgo, G., Esteban, F., Gómez, J., Moreno, G., Rodríguez, A., Blanch, L., … Bodí, M. (2018). Validation of the ICU-DaMa tool for automatically extracting variables for minimum dataset and quality indicators: The importance of data quality assessment. International Journal of Medical Informatics, 112, 166-172. doi:10.1016/j.ijmedinf.2018.02.007 es_ES
dc.description.references Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the Dimensionality of Data with Neural Networks. Science, 313(5786), 504-507. doi:10.1126/science.1127647 es_ES
dc.description.references Kohn LT, Corrigan JM. To err is human: building a safer health system. A report of the Committee on Quality of Health Care in America. 2000. p. 287. National Academies Press. es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem