Mostrar el registro sencillo del ítem
dc.contributor.author | Mocholí-Belenguer, Ferran | es_ES |
dc.contributor.author | Martinez-Millana, Antonio | es_ES |
dc.contributor.author | Mocholí Salcedo, Antonio | es_ES |
dc.contributor.author | Milián Sánchez, Victor | es_ES |
dc.date.accessioned | 2021-01-28T04:31:58Z | |
dc.date.available | 2021-01-28T04:31:58Z | |
dc.date.issued | 2019-09-13 | es_ES |
dc.identifier.issn | 1932-6203 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160084 | |
dc.description.abstract | [EN] Magnetic loops are one of the most popular and used traffic sensors because of their widely extended technology and simple mode of operation. Nevertheless, very simple models have been traditionally used to simulate the effect of the passage of vehicles on these loops. In general, vehicles have been considered simple rectangular metal plates located parallel to the ground plane at a certain height close to the vehicle chassis. However, with such a simple model, it is not possible to carry out a rigorous study to assess the performance of different models of vehicles with the aim of obtaining basic parameters such as the vehicle type, its speed or its direction in traffic. For this reason and because computer simulation and analysis have emerged as a priority in intelligent transportation systems (ITS), this paper aims to present a more complex vehicle model capable of characterizing vehicles as multiple metal plates of different sizes and heights, which will provide better results in virtual simulation environments. This type of modeling will be useful when reproducing the actual behavior of systems installed on roads based on inductive loops and will also facilitate vehicle classification and the extraction of basic traffic parameters. | es_ES |
dc.description.sponsorship | This research has been funded by the Universitat Politecnica de Valencia through its internal project `Detection, regulation and information equipment in the sector of intelligent transport systems (ITS). New models and tests of compatibility and verification of operation ' (20170764), which has been carried out at the ITACA Institute. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Public Library of Science | es_ES |
dc.relation.ispartof | PLoS ONE | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Vehicle modeling for the analysis of the response of detectors based on inductive loops | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1371/journal.pone.0218631 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//20170764/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Mocholí-Belenguer, F.; Martinez-Millana, A.; Mocholí Salcedo, A.; Milián Sánchez, V. (2019). Vehicle modeling for the analysis of the response of detectors based on inductive loops. PLoS ONE. 14(9):1-28. https://doi.org/10.1371/journal.pone.0218631 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1371/journal.pone.0218631 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 28 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 14 | es_ES |
dc.description.issue | 9 | es_ES |
dc.identifier.pmid | 31518345 | es_ES |
dc.identifier.pmcid | PMC6743756 | es_ES |
dc.relation.pasarela | S\393238 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Anderson, R. L. (1970). Electromagnetic loop vehicle detectors. IEEE Transactions on Vehicular Technology, 19(1), 23-30. doi:10.1109/t-vt.1970.23428 | es_ES |
dc.description.references | Prucha MJ, and View M. Inductive loop vehicle presence detector. U.S. Patent 3 576 525, Apr. 27, 1971. | es_ES |
dc.description.references | Koerner RJ, and Park C. Inductive loop vehicle detector. U.S. Patent 3 989 932, Nov. 2, 1976. | es_ES |
dc.description.references | Patrick HM, and Raymond JL. Vehicle presence loop detector. U.S. Patent 4 472 706, Sep. 18, 1984. | es_ES |
dc.description.references | Clark MAG. Induction loop vehicle detector. U.S. Patent 4 568 937, Feb. 4, 1986. | es_ES |
dc.description.references | Liu, K., Jia, J., Zuo, Z., & Ando, R. (2018). Heterogeneity in the effectiveness of cooperative crossing collision prevention systems. Transportation Research Part C: Emerging Technologies, 87, 1-10. doi:10.1016/j.trc.2017.12.013 | es_ES |
dc.description.references | Peng, Y., Jiang, Y., Lu, J., & Zou, Y. (2018). Examining the effect of adverse weather on road transportation using weather and traffic sensors. PLOS ONE, 13(10), e0205409. doi:10.1371/journal.pone.0205409 | es_ES |
dc.description.references | Liu, K., Cui, M.-Y., Cao, P., & Wang, J.-B. (2016). Iterative Bayesian Estimation of Travel Times on Urban Arterials: Fusing Loop Detector and Probe Vehicle Data. PLOS ONE, 11(6), e0158123. doi:10.1371/journal.pone.0158123 | es_ES |
dc.description.references | Ki, Y.-K., & Baik, D.-K. (2006). Vehicle-Classification Algorithm for Single-Loop Detectors Using Neural Networks. IEEE Transactions on Vehicular Technology, 55(6), 1704-1711. doi:10.1109/tvt.2006.883726 | es_ES |
dc.description.references | Zheng, Z., Wang, C., Wang, P., Xiong, Y., Zhang, F., & Lv, Y. (2018). Framework for fusing traffic information from social and physical transportation data. PLOS ONE, 13(8), e0201531. doi:10.1371/journal.pone.0201531 | es_ES |
dc.description.references | Pursula M and Kosonen I. Microprocessor and PC-based vehicle classification equipments using induction loops. Proceedings of the IEEE Second International Conference on Road Traffic Monitoring and Control; pp. 24–28, 1989. | es_ES |
dc.description.references | Gajda J, Sroka R, Stencel M, Wajda A, and Zeglen T. A vehicle classification based on inductive loop detectors. Proceedings of the IEEE Instrumentation and Measurement Technology Conference, Budapest; pp. 460–464, 2001. | es_ES |
dc.description.references | Nihan, N. L. (2000). Evaluation of forced flows on freeways with single-loop detectors. Journal of Advanced Transportation, 34(2), 269-296. doi:10.1002/atr.5670340206 | es_ES |
dc.description.references | Ametha J, Tumer S, and Darbha S. Formulation of a new methodology to identify erroneous paired loop detectors. Proceedings of the IEEE Intelligent Transportation Systems, Oakland; pp. 591–596, 2001. | es_ES |
dc.description.references | Ki, Y.-K., & Baik, D.-K. (2006). Model for Accurate Speed Measurement Using Double-Loop Detectors. IEEE Transactions on Vehicular Technology, 55(4), 1094-1101. doi:10.1109/tvt.2006.877462 | es_ES |
dc.description.references | Tang, J., Zou, Y., Ash, J., Zhang, S., Liu, F., & Wang, Y. (2016). Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System. PLOS ONE, 11(2), e0147263. doi:10.1371/journal.pone.0147263 | es_ES |
dc.description.references | Tok A, Hernandez SV, and Ritchie SG. Accurate individual vehicle speeds from single inductive loop signatures. Proceedings of 88th Annual Meeting of the Transportation Research Board, National Research Council, Washington, D.C, USA, 2009, paper 09–3512. | es_ES |
dc.description.references | Hilliard SR. Vehicle speed estimation using inductive vehicle detection systems. United States Patent 6999886, Feb. 2003. | es_ES |
dc.description.references | Gajda, J., Piwowar, P., Sroka, R., Stencel, M., & Zeglen, T. (2012). Application of inductive loops as wheel detectors. Transportation Research Part C: Emerging Technologies, 21(1), 57-66. doi:10.1016/j.trc.2011.08.010 | es_ES |
dc.description.references | Marszalek Z, Sroka R, Zeglen T. Inductive loop for vehicle axle detection from first concepts to the system based on changes in the sensor impedance components. Proceedings of 20th international conference on methods and models in automation and robotics, 24–27, August 2015, Miedzyzdroje, Poland, pp 765–769. | es_ES |
dc.description.references | Arroyo Núñez JH, Mocholí Salcedo A, Barrales Guadarrama R, and Arroyo Nuñez A. Communication between magnetic loops. Proceedings of 16th World Road Meeting, Lisbon, Portugal, May 2010. | es_ES |
dc.description.references | Gajda J and Burnos P. Identification of the spatial impulse response of inductive loop detectors. IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, 2015, pp. 1997–2002. | es_ES |
dc.description.references | Klein LA, Gibson DRP, and Mills MK. Traffic Detector Handbook. FHWAHRT-06-108. Federal Highway Administration, U.S. Department of Transportation 2006. | es_ES |
dc.description.references | Mills MK. Inductive loop system equivalent circuit model. Proceedings of the 39th Vehicular Technology Conference, May 1989, pp. 689–700. | es_ES |
dc.description.references | Mills MK. Self-Inductance Formulas for Multi- Turn Rectangular Loops Used with Vehicle Detectors. 33rd IEEE VTG Conference Record, May 1983, pp. 64–73. | es_ES |
dc.description.references | Mocholi-Salcedo, A., Arroyo-Nunez, J. H., Milian-Sanchez, V. M., Palomo-Anaya, M. J., & Arroyo-Nunez, A. (2017). Magnetic Field Generated by the Loops Used in Traffic Control Systems. IEEE Transactions on Intelligent Transportation Systems, 18(8), 2126-2136. doi:10.1109/tits.2016.2632972 | es_ES |
dc.description.references | Mocholí Belenguer, F., Mocholí Salcedo, A., Guill Ibañez, A., & Milián Sánchez, V. (2019). Advantages offered by the double magnetic loops versus the conventional single ones. PLOS ONE, 14(2), e0211626. doi:10.1371/journal.pone.0211626 | es_ES |
dc.description.references | Chen, F., Chen, S., & Ma, X. (2018). Analysis of hourly crash likelihood using unbalanced panel data mixed logit model and real-time driving environmental big data. Journal of Safety Research, 65, 153-159. doi:10.1016/j.jsr.2018.02.010 | es_ES |
dc.description.references | Ma, X., Chen, S., & Chen, F. (2017). Multivariate space-time modeling of crash frequencies by injury severity levels. Analytic Methods in Accident Research, 15, 29-40. doi:10.1016/j.amar.2017.06.001 | es_ES |