- -

Vehicle modeling for the analysis of the response of detectors based on inductive loops

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Vehicle modeling for the analysis of the response of detectors based on inductive loops

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mocholí-Belenguer, Ferran es_ES
dc.contributor.author Martinez-Millana, Antonio es_ES
dc.contributor.author Mocholí Salcedo, Antonio es_ES
dc.contributor.author Milián Sánchez, Victor es_ES
dc.date.accessioned 2021-01-28T04:31:58Z
dc.date.available 2021-01-28T04:31:58Z
dc.date.issued 2019-09-13 es_ES
dc.identifier.issn 1932-6203 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160084
dc.description.abstract [EN] Magnetic loops are one of the most popular and used traffic sensors because of their widely extended technology and simple mode of operation. Nevertheless, very simple models have been traditionally used to simulate the effect of the passage of vehicles on these loops. In general, vehicles have been considered simple rectangular metal plates located parallel to the ground plane at a certain height close to the vehicle chassis. However, with such a simple model, it is not possible to carry out a rigorous study to assess the performance of different models of vehicles with the aim of obtaining basic parameters such as the vehicle type, its speed or its direction in traffic. For this reason and because computer simulation and analysis have emerged as a priority in intelligent transportation systems (ITS), this paper aims to present a more complex vehicle model capable of characterizing vehicles as multiple metal plates of different sizes and heights, which will provide better results in virtual simulation environments. This type of modeling will be useful when reproducing the actual behavior of systems installed on roads based on inductive loops and will also facilitate vehicle classification and the extraction of basic traffic parameters. es_ES
dc.description.sponsorship This research has been funded by the Universitat Politecnica de Valencia through its internal project `Detection, regulation and information equipment in the sector of intelligent transport systems (ITS). New models and tests of compatibility and verification of operation ' (20170764), which has been carried out at the ITACA Institute. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. es_ES
dc.language Inglés es_ES
dc.publisher Public Library of Science es_ES
dc.relation.ispartof PLoS ONE es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Vehicle modeling for the analysis of the response of detectors based on inductive loops es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.pone.0218631 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//20170764/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Mocholí-Belenguer, F.; Martinez-Millana, A.; Mocholí Salcedo, A.; Milián Sánchez, V. (2019). Vehicle modeling for the analysis of the response of detectors based on inductive loops. PLoS ONE. 14(9):1-28. https://doi.org/10.1371/journal.pone.0218631 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1371/journal.pone.0218631 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 28 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 9 es_ES
dc.identifier.pmid 31518345 es_ES
dc.identifier.pmcid PMC6743756 es_ES
dc.relation.pasarela S\393238 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Anderson, R. L. (1970). Electromagnetic loop vehicle detectors. IEEE Transactions on Vehicular Technology, 19(1), 23-30. doi:10.1109/t-vt.1970.23428 es_ES
dc.description.references Prucha MJ, and View M. Inductive loop vehicle presence detector. U.S. Patent 3 576 525, Apr. 27, 1971. es_ES
dc.description.references Koerner RJ, and Park C. Inductive loop vehicle detector. U.S. Patent 3 989 932, Nov. 2, 1976. es_ES
dc.description.references Patrick HM, and Raymond JL. Vehicle presence loop detector. U.S. Patent 4 472 706, Sep. 18, 1984. es_ES
dc.description.references Clark MAG. Induction loop vehicle detector. U.S. Patent 4 568 937, Feb. 4, 1986. es_ES
dc.description.references Liu, K., Jia, J., Zuo, Z., & Ando, R. (2018). Heterogeneity in the effectiveness of cooperative crossing collision prevention systems. Transportation Research Part C: Emerging Technologies, 87, 1-10. doi:10.1016/j.trc.2017.12.013 es_ES
dc.description.references Peng, Y., Jiang, Y., Lu, J., & Zou, Y. (2018). Examining the effect of adverse weather on road transportation using weather and traffic sensors. PLOS ONE, 13(10), e0205409. doi:10.1371/journal.pone.0205409 es_ES
dc.description.references Liu, K., Cui, M.-Y., Cao, P., & Wang, J.-B. (2016). Iterative Bayesian Estimation of Travel Times on Urban Arterials: Fusing Loop Detector and Probe Vehicle Data. PLOS ONE, 11(6), e0158123. doi:10.1371/journal.pone.0158123 es_ES
dc.description.references Ki, Y.-K., & Baik, D.-K. (2006). Vehicle-Classification Algorithm for Single-Loop Detectors Using Neural Networks. IEEE Transactions on Vehicular Technology, 55(6), 1704-1711. doi:10.1109/tvt.2006.883726 es_ES
dc.description.references Zheng, Z., Wang, C., Wang, P., Xiong, Y., Zhang, F., & Lv, Y. (2018). Framework for fusing traffic information from social and physical transportation data. PLOS ONE, 13(8), e0201531. doi:10.1371/journal.pone.0201531 es_ES
dc.description.references Pursula M and Kosonen I. Microprocessor and PC-based vehicle classification equipments using induction loops. Proceedings of the IEEE Second International Conference on Road Traffic Monitoring and Control; pp. 24–28, 1989. es_ES
dc.description.references Gajda J, Sroka R, Stencel M, Wajda A, and Zeglen T. A vehicle classification based on inductive loop detectors. Proceedings of the IEEE Instrumentation and Measurement Technology Conference, Budapest; pp. 460–464, 2001. es_ES
dc.description.references Nihan, N. L. (2000). Evaluation of forced flows on freeways with single-loop detectors. Journal of Advanced Transportation, 34(2), 269-296. doi:10.1002/atr.5670340206 es_ES
dc.description.references Ametha J, Tumer S, and Darbha S. Formulation of a new methodology to identify erroneous paired loop detectors. Proceedings of the IEEE Intelligent Transportation Systems, Oakland; pp. 591–596, 2001. es_ES
dc.description.references Ki, Y.-K., & Baik, D.-K. (2006). Model for Accurate Speed Measurement Using Double-Loop Detectors. IEEE Transactions on Vehicular Technology, 55(4), 1094-1101. doi:10.1109/tvt.2006.877462 es_ES
dc.description.references Tang, J., Zou, Y., Ash, J., Zhang, S., Liu, F., & Wang, Y. (2016). Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System. PLOS ONE, 11(2), e0147263. doi:10.1371/journal.pone.0147263 es_ES
dc.description.references Tok A, Hernandez SV, and Ritchie SG. Accurate individual vehicle speeds from single inductive loop signatures. Proceedings of 88th Annual Meeting of the Transportation Research Board, National Research Council, Washington, D.C, USA, 2009, paper 09–3512. es_ES
dc.description.references Hilliard SR. Vehicle speed estimation using inductive vehicle detection systems. United States Patent 6999886, Feb. 2003. es_ES
dc.description.references Gajda, J., Piwowar, P., Sroka, R., Stencel, M., & Zeglen, T. (2012). Application of inductive loops as wheel detectors. Transportation Research Part C: Emerging Technologies, 21(1), 57-66. doi:10.1016/j.trc.2011.08.010 es_ES
dc.description.references Marszalek Z, Sroka R, Zeglen T. Inductive loop for vehicle axle detection from first concepts to the system based on changes in the sensor impedance components. Proceedings of 20th international conference on methods and models in automation and robotics, 24–27, August 2015, Miedzyzdroje, Poland, pp 765–769. es_ES
dc.description.references Arroyo Núñez JH, Mocholí Salcedo A, Barrales Guadarrama R, and Arroyo Nuñez A. Communication between magnetic loops. Proceedings of 16th World Road Meeting, Lisbon, Portugal, May 2010. es_ES
dc.description.references Gajda J and Burnos P. Identification of the spatial impulse response of inductive loop detectors. IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, 2015, pp. 1997–2002. es_ES
dc.description.references Klein LA, Gibson DRP, and Mills MK. Traffic Detector Handbook. FHWAHRT-06-108. Federal Highway Administration, U.S. Department of Transportation 2006. es_ES
dc.description.references Mills MK. Inductive loop system equivalent circuit model. Proceedings of the 39th Vehicular Technology Conference, May 1989, pp. 689–700. es_ES
dc.description.references Mills MK. Self-Inductance Formulas for Multi- Turn Rectangular Loops Used with Vehicle Detectors. 33rd IEEE VTG Conference Record, May 1983, pp. 64–73. es_ES
dc.description.references Mocholi-Salcedo, A., Arroyo-Nunez, J. H., Milian-Sanchez, V. M., Palomo-Anaya, M. J., & Arroyo-Nunez, A. (2017). Magnetic Field Generated by the Loops Used in Traffic Control Systems. IEEE Transactions on Intelligent Transportation Systems, 18(8), 2126-2136. doi:10.1109/tits.2016.2632972 es_ES
dc.description.references Mocholí Belenguer, F., Mocholí Salcedo, A., Guill Ibañez, A., & Milián Sánchez, V. (2019). Advantages offered by the double magnetic loops versus the conventional single ones. PLOS ONE, 14(2), e0211626. doi:10.1371/journal.pone.0211626 es_ES
dc.description.references Chen, F., Chen, S., & Ma, X. (2018). Analysis of hourly crash likelihood using unbalanced panel data mixed logit model and real-time driving environmental big data. Journal of Safety Research, 65, 153-159. doi:10.1016/j.jsr.2018.02.010 es_ES
dc.description.references Ma, X., Chen, S., & Chen, F. (2017). Multivariate space-time modeling of crash frequencies by injury severity levels. Analytic Methods in Accident Research, 15, 29-40. doi:10.1016/j.amar.2017.06.001 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem