- -

Large scale evaluation of differences between network-based and pairwise sequence-alignment-based methods of dendrogram reconstruction

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Large scale evaluation of differences between network-based and pairwise sequence-alignment-based methods of dendrogram reconstruction

Show full item record

Gamermann, D.; Montagud, A.; Conejero, JA.; Fernández De Córdoba, P.; Urchueguía Schölzel, JF. (2019). Large scale evaluation of differences between network-based and pairwise sequence-alignment-based methods of dendrogram reconstruction. PLoS ONE. 14(9):1-13. https://doi.org/10.1371/journal.pone.0221631

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160086

Files in this item

Item Metadata

Title: Large scale evaluation of differences between network-based and pairwise sequence-alignment-based methods of dendrogram reconstruction
Author: Gamermann, Daniel Montagud, Arnau Conejero, J. Alberto Fernández de Córdoba, Pedro Urchueguía Schölzel, Javier Fermín
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Issued date:
Abstract:
[EN] Dendrograms are a way to represent relationships between organisms. Nowadays, these are inferred based on the comparison of genes or protein sequences by taking into account their differences and similarities. The ...[+]
Subjects: Dendrograms , Statistical analysis
Copyrigths: Reconocimiento (by)
Source:
PLoS ONE. (issn: 1932-6203 )
DOI: 10.1371/journal.pone.0221631
Publisher:
Public Library of Science
Publisher version: https://doi.org/10.1371/journal.pone.0221631
Project ID:
info:eu-repo/grantAgreement/EC/FP7/308518/EU/Design, construction and demonstration of solar biofuel production using novel (photo)synthetic cell factories/
Thanks:
All authors received funding from the European Union Seventh Framework Program (FP7/2007-2013) under grant agreement number 308518 (CyanoFactory) (https://ec.europa.eu/research/fp7/index_en.cfm).The funders had no role in ...[+]
Type: Artículo

References

Robinson, D. F., & Foulds, L. R. (1981). Comparison of phylogenetic trees. Mathematical Biosciences, 53(1-2), 131-147. doi:10.1016/0025-5564(81)90043-2

Day, W. H. E. (1985). Optimal algorithms for comparing trees with labeled leaves. Journal of Classification, 2(1), 7-28. doi:10.1007/bf01908061

Pattengale, N. D., Gottlieb, E. J., & Moret, B. M. E. (2007). Efficiently Computing the Robinson-Foulds Metric. Journal of Computational Biology, 14(6), 724-735. doi:10.1089/cmb.2007.r012 [+]
Robinson, D. F., & Foulds, L. R. (1981). Comparison of phylogenetic trees. Mathematical Biosciences, 53(1-2), 131-147. doi:10.1016/0025-5564(81)90043-2

Day, W. H. E. (1985). Optimal algorithms for comparing trees with labeled leaves. Journal of Classification, 2(1), 7-28. doi:10.1007/bf01908061

Pattengale, N. D., Gottlieb, E. J., & Moret, B. M. E. (2007). Efficiently Computing the Robinson-Foulds Metric. Journal of Computational Biology, 14(6), 724-735. doi:10.1089/cmb.2007.r012

Woese, C. R., & Fox, G. E. (1977). Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proceedings of the National Academy of Sciences, 74(11), 5088-5090. doi:10.1073/pnas.74.11.5088

Ciccarelli, F. D., Doerks, T., von Mering, C., Creevey, C. J., Snel, B., & Bork, P. (2006). Toward Automatic Reconstruction of a Highly Resolved Tree of Life. Science, 311(5765), 1283-1287. doi:10.1126/science.1123061

Kurt Lienau, E., DeSalle, R., Allard, M., Brown, E. W., Swofford, D., Rosenfeld, J. A., … Planet, P. J. (2010). The mega-matrix tree of life: using genome-scale horizontal gene transfer and sequence evolution data as information about the vertical history of life. Cladistics, 27(4), 417-427. doi:10.1111/j.1096-0031.2010.00337.x

Wu, M., & Eisen, J. A. (2008). A simple, fast, and accurate method of phylogenomic inference. Genome Biology, 9(10), R151. doi:10.1186/gb-2008-9-10-r151

Wu, D., Hugenholtz, P., Mavromatis, K., Pukall, R., Dalin, E., Ivanova, N. N., … Eisen, J. A. (2009). A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature, 462(7276), 1056-1060. doi:10.1038/nature08656

Mai, H., Lam, T.-W., & Ting, H.-F. (2017). A simple and economical method for improving whole genome alignment. BMC Genomics, 18(S4). doi:10.1186/s12864-017-3734-2

Feng, B., Lin, Y., Zhou, L., Guo, Y., Friedman, R., Xia, R., … Tang, J. (2017). Reconstructing Yeasts Phylogenies and Ancestors from Whole Genome Data. Scientific Reports, 7(1). doi:10.1038/s41598-017-15484-5

Rokas, A., Williams, B. L., King, N., & Carroll, S. B. (2003). Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature, 425(6960), 798-804. doi:10.1038/nature02053

JEFFROY, O., BRINKMANN, H., DELSUC, F., & PHILIPPE, H. (2006). Phylogenomics: the beginning of incongruence? Trends in Genetics, 22(4), 225-231. doi:10.1016/j.tig.2006.02.003

Gamermann, D., Montagud, A., Conejero, J. A., Urchueguía, J. F., & de Córdoba, P. F. (2014). New Approach for Phylogenetic Tree Recovery Based on Genome-Scale Metabolic Networks. Journal of Computational Biology, 21(7), 508-519. doi:10.1089/cmb.2013.0150

Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., & Barabási, A.-L. (2000). The large-scale organization of metabolic networks. Nature, 407(6804), 651-654. doi:10.1038/35036627

Clemente, J. C., Satou, K., & Valiente, G. (2007). Phylogenetic reconstruction from non-genomic data. Bioinformatics, 23(2), e110-e115. doi:10.1093/bioinformatics/btl307

Deyasi, K., Banerjee, A., & Deb, B. (2015). Phylogeny of metabolic networks: A spectral graph theoretical approach. Journal of Biosciences, 40(4), 799-808. doi:10.1007/s12038-015-9562-0

Kanehisa, M. (2000). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, 28(1), 27-30. doi:10.1093/nar/28.1.27

Reyes, R., Gamermann, D., Montagud, A., Fuente, D., Triana, J., Urchueguía, J. F., & de Córdoba, P. F. (2012). Automation on the Generation of Genome-Scale Metabolic Models. Journal of Computational Biology, 19(12), 1295-1306. doi:10.1089/cmb.2012.0183

Gross, J. L., Yellen, J., & Zhang, P. (Eds.). (2013). Handbook of Graph Theory. doi:10.1201/b16132

Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3), 443-453. doi:10.1016/0022-2836(70)90057-4

Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems, 30(1-7), 107-117. doi:10.1016/s0169-7552(98)00110-x

Allesina, S., & Pascual, M. (2009). Googling Food Webs: Can an Eigenvector Measure Species’ Importance for Coextinctions? PLoS Computational Biology, 5(9), e1000494. doi:10.1371/journal.pcbi.1000494

Winter, C., Kristiansen, G., Kersting, S., Roy, J., Aust, D., Knösel, T., … Grützmann, R. (2012). Google Goes Cancer: Improving Outcome Prediction for Cancer Patients by Network-Based Ranking of Marker Genes. PLoS Computational Biology, 8(5), e1002511. doi:10.1371/journal.pcbi.1002511

Sukumaran, J., & Holder, M. T. (2010). DendroPy: a Python library for phylogenetic computing. Bioinformatics, 26(12), 1569-1571. doi:10.1093/bioinformatics/btq228

Henikoff, S., & Henikoff, J. G. (1992). Amino acid substitution matrices from protein blocks. Proceedings of the National Academy of Sciences, 89(22), 10915-10919. doi:10.1073/pnas.89.22.10915

Dayhoff MO, Schwartz RM. Chapter 22: A model of evolutionary change in proteins. In: in Atlas of Protein Sequence and Structure; 1978.

Suzuki, R., & Shimodaira, H. (2006). Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics, 22(12), 1540-1542. doi:10.1093/bioinformatics/btl117

Plata, G., Henry, C. S., & Vitkup, D. (2014). Long-term phenotypic evolution of bacteria. Nature, 517(7534), 369-372. doi:10.1038/nature13827

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record