- -

Identification of a common recognition center for a photoactive non-steroidal antiinflammatory drug in serum albumins of different species

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Identification of a common recognition center for a photoactive non-steroidal antiinflammatory drug in serum albumins of different species

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Molins-Molina, Oscar es_ES
dc.contributor.author Lence, Emilio es_ES
dc.contributor.author Limones-Herrero, Daniel es_ES
dc.contributor.author González-Bello, Concepción es_ES
dc.contributor.author Miranda Alonso, Miguel Ángel es_ES
dc.contributor.author Jiménez Molero, María Consuelo es_ES
dc.date.accessioned 2021-01-28T04:32:05Z
dc.date.available 2021-01-28T04:32:05Z
dc.date.issued 2019-01-07 es_ES
dc.identifier.issn 2052-4110 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160087
dc.description.abstract [EN] The non-steroidal anti-inflammatory drug (S)-carprofen (CPF) has been used as a photoactive probe to investigate the possible existence of a common recognition center in serum albumins (SAs) of different species. The methodology involves irradiation of the CPF/SA complexes, coupled with gel filtration chromatography or proteomic analysis of the photolysates, docking and molecular dynamics simulations. Photolysis of CPF/SA complexes at = 320 nm, and gel filtration chromatography, revealed that the protein fraction still contained the drug fluorophore, in agreement with covalent attachment of the photogenerated radical intermediate CBZ to SAs. After trypsin digestion and ESI-MS/MS, the incorporation of CBZ was detected at several positions in the different albumins. Remarkably, modifications at the IB/IIIA interface were observed in all cases (Tyr452 in HSA, RbSA and RtSA and Tyr451 in BSA, PSA and SSA). The molecular basis of this common recognition, studied by docking and molecular dynamics simulation studies on the corresponding non-covalent complexes, corroborated the experimentally observed covalent modifications. Our computational studies also revealed that the previously reported displacement of CPF by (S)-ibuprofen, a site II specific drug, would be due to an allosteric effect in site II, rather than a direct molecular displacement, as expected. es_ES
dc.description.sponsorship Financial support from the Spanish Ministry of Economy and Competiveness (CTQ2016-78875-P, SAF2016-75638-R and BES-2014-069404), Generalitat Valenciana (PROMETEO2017/075), Conselleria de Cultura, Educacion e Ordenacion Universitaria (Centro singular de investigacion de Galicia accreditation 2016-2019, ED431G/09) and the European Regional Development Fund (ERDF) is acknowledged. This work was also supported by Instituto de Salud Carlos III (ISCIII) co-funded by Fondo Europeo de Desarrollo Regional FEDER for the Thematic Networks and Co-operative Research Centres: ARADyAL (RD16/0006/0030). EL thanks the Xunta de Galicia for his postdoctoral fellowship. We are also grateful to the Centro de Supercomputacion de Galicia (CESGA) for use of the Finis Terrae II supercomputer. The proteomic analysis was performed in the proteomics facility of SCSIE University of Valencia that belongs to ProteoRed PRB2-ISCIII and is supported by grant PT13/0001, of the PE I+D+I 2013-2016, funded by ISCIII and FEDER. es_ES
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Organic Chemistry Frontiers es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Identification of a common recognition center for a photoactive non-steroidal antiinflammatory drug in serum albumins of different species es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c8qo01045e es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/SAF2016-75638-R/ES/DESARROLLO DE NUEVOS FARMACOS PARA EL TRATAMIENTO DE LAS INFECCIONES BACTERIANAS MULTIRESISTENTES: APROXIMACIONES QUE INCIDEN SOBRE VIABILIDAD, RESISTENCIA Y VIRULENCIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Xunta de Galicia//ED431G%2F09/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//PT13%2F0001/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2014-069404/ES/BES-2014-069404/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2016-78875-P/ES/CONTROL SUPRAMOLECULAR DE LA FOTORREACTIVIDAD EN MEDIOS MICROHETEROGENOS BASADOS EN AMINOACIDOS: GELES MOLECULARES Y PROTEINAS TRANSPORTADORAS COMO NANORREACTORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RD16%2F0006%2F0030/ES/Asma, Reacciones Adversas y Alérgicas (ARADYAL)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F075/ES/Reacciones fotoquímicas de biomoléculas/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Molins-Molina, O.; Lence, E.; Limones-Herrero, D.; González-Bello, C.; Miranda Alonso, MÁ.; Jiménez Molero, MC. (2019). Identification of a common recognition center for a photoactive non-steroidal antiinflammatory drug in serum albumins of different species. Organic Chemistry Frontiers. 6(1):99-109. https://doi.org/10.1039/c8qo01045e es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c8qo01045e es_ES
dc.description.upvformatpinicio 99 es_ES
dc.description.upvformatpfin 109 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\379255 es_ES
dc.contributor.funder Xunta de Galicia es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Limones-Herrero, D., Pérez-Ruiz, R., Lence, E., González-Bello, C., Miranda, M. A., & Jiménez, M. C. (2017). Mapping a protein recognition centre with chiral photoactive ligands. An integrated approach combining photophysics, reactivity, proteomics and molecular dynamics simulation studies. Chemical Science, 8(4), 2621-2628. doi:10.1039/c6sc04900a es_ES
dc.description.references O’Brien, W. M., & Bagby, G. F. (1987). Carprofen: A New Nonsteroidal Antiinflammatory Drug Pharmacology, Clinical Efficacy and Adverse Effects. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 7(1), 16-24. doi:10.1002/j.1875-9114.1987.tb03500.x es_ES
dc.description.references Curry, S. L., Cogar, S. M., & Cook, J. L. (2005). Nonsteroidal Antiinflammatory Drugs: A Review. Journal of the American Animal Hospital Association, 41(5), 298-309. doi:10.5326/0410298 es_ES
dc.description.references LEES, P., LANDONI, M. F., Giraudel, J., & TOUTAIN, P. L. (2004). Pharmacodynamics and pharmacokinetics of nonsteroidal anti-inflammatory drugs in species of veterinary interest. Journal of Veterinary Pharmacology and Therapeutics, 27(6), 479-490. doi:10.1111/j.1365-2885.2004.00617.x es_ES
dc.description.references T. J. Peter , All about albumin: biochemistry, genetics and medical applications , Academic press , California , 1996 es_ES
dc.description.references He, X. M., & Carter, D. C. (1992). Atomic structure and chemistry of human serum albumin. Nature, 358(6383), 209-215. doi:10.1038/358209a0 es_ES
dc.description.references Kragh-Hansen, U., Chuang, V. T. G., & Otagiri, M. (2002). Practical Aspects of the Ligand-Binding and Enzymatic Properties of Human Serum Albumin. Biological and Pharmaceutical Bulletin, 25(6), 695-704. doi:10.1248/bpb.25.695 es_ES
dc.description.references Fasano, M., Curry, S., Terreno, E., Galliano, M., Fanali, G., Narciso, P., … Ascenzi, P. (2005). The extraordinary ligand binding properties of human serum albumin. IUBMB Life (International Union of Biochemistry and Molecular Biology: Life), 57(12), 787-796. doi:10.1080/15216540500404093 es_ES
dc.description.references Carter, D. C., & Ho, J. X. (1994). Structure of Serum Albumin. Advances in Protein Chemistry, 153-203. doi:10.1016/s0065-3233(08)60640-3 es_ES
dc.description.references Kosa, T., Maruyama, T., & Otagiri, M. (1997). Pharmaceutical Research, 14(11), 1607-1612. doi:10.1023/a:1012138604016 es_ES
dc.description.references Chang, C.-F., & Jeng, S.-R. (1995). Isolation and characterization of the female-specific protein (vitellogenin) in mature female hemolymph of the prawn Penaeus chinensis. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 112(2), 257-263. doi:10.1016/0305-0491(95)00059-3 es_ES
dc.description.references Rahman, M. H., Maruyama, T., Okada, T., Yamasaki, K., & Otagiri, M. (1993). Study of interaction of carprofen and its enantiomers with human serum albumin—I. Biochemical Pharmacology, 46(10), 1721-1731. doi:10.1016/0006-2952(93)90576-i es_ES
dc.description.references Vayá, I., Pérez-Ruiz, R., Lhiaubet-Vallet, V., Jiménez, M. C., & Miranda, M. A. (2010). Drug–protein interactions assessed by fluorescence measurements in the real complexes and in model dyads. Chemical Physics Letters, 486(4-6), 147-153. doi:10.1016/j.cplett.2009.12.091 es_ES
dc.description.references Lhiaubet-Vallet, V., Boscá, F., & Miranda, M. A. (2006). Stereodifferentiating Drug−Biomolecule Interactions in the Triplet Excited State:  Studies on Supramolecular Carprofen/Protein Systems and on Carprofen−Tryptophan Model Dyads. The Journal of Physical Chemistry B, 111(2), 423-431. doi:10.1021/jp066968k es_ES
dc.description.references Rahman, M. H., Maruyama, T., Okada, T., Imai, T., & Otagiri, M. (1993). Study of interaction of carprofen and its enantiomers with human serum albumin—II. Biochemical Pharmacology, 46(10), 1733-1740. doi:10.1016/0006-2952(93)90577-j es_ES
dc.description.references Divkovic, M., Pease, C. K., Gerberick, G. F., & Basketter, D. A. (2005). Hapten-protein binding: from theory to practical application in the in vitro prediction of skin sensitization. Contact Dermatitis, 53(4), 189-200. doi:10.1111/j.0105-1873.2005.00683.x es_ES
dc.description.references Johannesson, G., Rosqvist, S., Lindh, C. H., Welinder, H., & Jönsson, B. A. G. (2001). Serum albumins are the major site for in vivo formation of hapten-carrier protein adducts in plasma from humans and guinea-pigs exposed to type-1 allergy inducing hexahydrophthalic anhydride. Clinical & Experimental Allergy, 31(7), 1021-1030. doi:10.1046/j.1365-2222.2001.01109.x es_ES
dc.description.references Lahoz, A., Hernández, D., Miranda, M. A., Pérez-Prieto, J., Morera, I. M., & Castell, J. V. (2001). Antibodies Directed to Drug Epitopes to Investigate the Structure of Drug−Protein Photoadducts. Recognition of a Common Photobound Substructure in Tiaprofenic Acid/Ketoprofen Cross-Photoreactivity. Chemical Research in Toxicology, 14(11), 1486-1491. doi:10.1021/tx0002482 es_ES
dc.description.references P. Jones , In vitro phototoxicity assays , in Principles and Practice of Skin Toxicology , ed. R. Chilcott and S. Price , John Wiley & Sons , 2008 , p. 169 es_ES
dc.description.references Merot, Y., Harms, M., & Saurat, J.-H. (1983). Photosensibilisation au carprofène (Imady®), un nouvel anti-inflammatoire non stéroïdien. Dermatology, 166(6), 301-307. doi:10.1159/000249894 es_ES
dc.description.references Roelandts, G., & Goh, C. L. (1986). Photosensitivity Associated with Carprofen. Dermatology, 172(1), 64-65. doi:10.1159/000249297 es_ES
dc.description.references Boscá, F., Marín, M. L., & Miranda, M. A. (2001). Photoreactivity of the Nonsteroidal Anti-inflammatory 2-Arylpropionic Acids with Photosensitizing Side Effects¶. Photochemistry and Photobiology, 74(5), 637. doi:10.1562/0031-8655(2001)074<0637:potnai>2.0.co;2 es_ES
dc.description.references Kerr, A. C., Muller, F., Ferguson, J., & Dawe, R. S. (2008). Occupational carprofen photoallergic contact dermatitis. British Journal of Dermatology, 159(6), 1303-1308. doi:10.1111/j.1365-2133.2008.08847.x es_ES
dc.description.references Moser, J., Boscá, F., Lovell, W. W., Castell, J. V., Miranda, M. A., & Hye, A. (2000). Photobinding of carprofen to protein. Journal of Photochemistry and Photobiology B: Biology, 58(1), 13-19. doi:10.1016/s1011-1344(00)00115-9 es_ES
dc.description.references P.-L. Toutain , A.Ferran and A.Bousquet-Mélou , Species Differences in Pharmacokinetics and Pharmacodynamics , in Handbook of Experimental Pharmacology, Vol. 199, Comparative and Veterinary Pharmacology , ed. F. Cunningan , J. Elliot and P. Lees , Springer-Verlag , Berlin, Heidelberg , 2010 es_ES
dc.description.references Bosca, F., Encinas, S., Heelis, P. F., & Miranda, M. A. (1997). Photophysical and Photochemical Characterization of a Photosensitizing Drug:  A Combined Steady State Photolysis and Laser Flash Photolysis Study on Carprofen. Chemical Research in Toxicology, 10(7), 820-827. doi:10.1021/tx9700376 es_ES
dc.description.references Sekula, B., Ciesielska, A., Rytczak, P., Koziołkiewicz, M., & Bujacz, A. (2016). Structural evidence of the species-dependent albumin binding of the modified cyclic phosphatidic acid with cytotoxic properties. Bioscience Reports, 36(3). doi:10.1042/bsr20160089 es_ES
dc.description.references http://www.ccdc.cam.ac.uk/solutions/csd-discovery/components/gold/ es_ES
dc.description.references Sivertsen, A., Isaksson, J., Leiros, H.-K. S., Svenson, J., Svendsen, J.-S., & Brandsdal, B. O. (2014). Synthetic cationic antimicrobial peptides bind with their hydrophobic parts to drug site II of human serum albumin. BMC Structural Biology, 14(1). doi:10.1186/1472-6807-14-4 es_ES
dc.description.references Pérez-Ruíz, R., Lence, E., Andreu, I., Limones-Herrero, D., González-Bello, C., Miranda, M. A., & Jiménez, M. C. (2017). A New Pathway for Protein Haptenation by β-Lactams. Chemistry - A European Journal, 23(56), 13986-13994. doi:10.1002/chem.201702643 es_ES
dc.description.references Ghuman, J., Zunszain, P. A., Petitpas, I., Bhattacharya, A. A., Otagiri, M., & Curry, S. (2005). Structural Basis of the Drug-binding Specificity of Human Serum Albumin. Journal of Molecular Biology, 353(1), 38-52. doi:10.1016/j.jmb.2005.07.075 es_ES
dc.description.references Curry, S., Mandelkow, H., Brick, P., & Franks, N. (1998). Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nature Structural Biology, 5(9), 827-835. doi:10.1038/1869 es_ES
dc.description.references Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. Journal of Chemical Theory and Computation, 8(9), 3314-3321. doi:10.1021/ct300418h es_ES
dc.description.references Wang, Z., Ho, J. X., Ruble, J. R., Rose, J., Rüker, F., Ellenburg, M., … Carter, D. C. (2013). Structural studies of several clinically important oncology drugs in complex with human serum albumin. Biochimica et Biophysica Acta (BBA) - General Subjects, 1830(12), 5356-5374. doi:10.1016/j.bbagen.2013.06.032 es_ES
dc.description.references Zunszain, P. A., Ghuman, J., Komatsu, T., Tsuchida, E., & Curry, S. (2003). BMC Structural Biology, 3(1), 6. doi:10.1186/1472-6807-3-6 es_ES
dc.description.references Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845-858. doi:10.1038/nprot.2015.053 es_ES
dc.description.references Vanquelef, E., Simon, S., Marquant, G., Garcia, E., Klimerak, G., Delepine, J. C., … Dupradeau, F.-Y. (2011). R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Research, 39(suppl_2), W511-W517. doi:10.1093/nar/gkr288 es_ES
dc.description.references http://upjv.q4md-forcefieldtools.org/RED/ es_ES
dc.description.references Dupradeau, F.-Y., Pigache, A., Zaffran, T., Savineau, C., Lelong, R., Grivel, N., … Cieplak, P. (2010). The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building. Physical Chemistry Chemical Physics, 12(28), 7821. doi:10.1039/c0cp00111b es_ES
dc.description.references Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., … Kollman, P. A. (1995). A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. Journal of the American Chemical Society, 117(19), 5179-5197. doi:10.1021/ja00124a002 es_ES
dc.description.references Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., … Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668-1688. doi:10.1002/jcc.20290 es_ES
dc.description.references Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157-1174. doi:10.1002/jcc.20035 es_ES
dc.description.references Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics and Modelling, 25(2), 247-260. doi:10.1016/j.jmgm.2005.12.005 es_ES
dc.description.references Gordon, J. C., Myers, J. B., Folta, T., Shoja, V., Heath, L. S., & Onufriev, A. (2005). H++: a server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Research, 33(Web Server), W368-W371. doi:10.1093/nar/gki464 es_ES
dc.description.references http://biophysics.cs.vt.edu/H++ es_ES
dc.description.references Götz, A. W., Williamson, M. J., Xu, D., Poole, D., Le Grand, S., & Walker, R. C. (2012). Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born. Journal of Chemical Theory and Computation, 8(5), 1542-1555. doi:10.1021/ct200909j es_ES
dc.description.references Le Grand, S., Götz, A. W., & Walker, R. C. (2013). SPFP: Speed without compromise—A mixed precision model for GPU accelerated molecular dynamics simulations. Computer Physics Communications, 184(2), 374-380. doi:10.1016/j.cpc.2012.09.022 es_ES
dc.description.references Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: AnN⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089-10092. doi:10.1063/1.464397 es_ES
dc.description.references Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. . (1977). Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327-341. doi:10.1016/0021-9991(77)90098-5 es_ES
dc.description.references W. L. DeLano , The PyMOL Molecular Graphics System , DeLano Scientific LLC , Palo Alto, CA, USA , 2008 . http://www.pymol.org/ es_ES
dc.description.references Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. Journal of Chemical Theory and Computation, 9(7), 3084-3095. doi:10.1021/ct400341p es_ES
dc.description.references http://www.amber.utah.edu/AMBER-workshop/London-2015/pca/ es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem