Mostrar el registro sencillo del ítem
dc.contributor.author | Martinez-Ferri, Javier Enrique | es_ES |
dc.contributor.author | Juste Vidal, Belen Jeanine | es_ES |
dc.contributor.author | Verdú Martín, Gumersindo Jesús | es_ES |
dc.contributor.author | Miró Herrero, Rafael | es_ES |
dc.contributor.author | Ortiz Moragón, Josefina | es_ES |
dc.contributor.author | Martorell Alsina, Sebastián Salvador | es_ES |
dc.date.accessioned | 2021-01-28T04:32:18Z | |
dc.date.available | 2021-01-28T04:32:18Z | |
dc.date.issued | 2019-02 | es_ES |
dc.identifier.issn | 0969-806X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160092 | |
dc.description.abstract | [EN] According to World Health Organization (WHO), the radon is the second leading cause of lung cancer. This work is centered on a Waste Water Pre-Treatment Plant (WWTP) with radon concentration above Spanish action level (600 Bq per cubic meter). The authors have developed a novelty method based on gamma and alpha spectrometry to measure the radon equilibrium factor. At the same time, a Matlab (c) algorithm (UPVDose) has been coded based on the International Commission on Radiological Protection (ICRP) 66 Human Respiratory Tract Model for Radiological Protection (HRT), to calculate the inhalation doses received by workers of this treatment plant due to the radon progeny. The effective doses of the workers obtained in the human respiratory tract are found to be low, but results are very dependent on the radionuclide type of absorption | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Radiation Physics and Chemistry | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Radon | es_ES |
dc.subject | Equilibrium factor | es_ES |
dc.subject | Waste water | es_ES |
dc.subject | Inhalation doses | es_ES |
dc.subject | Lung dosimetry | es_ES |
dc.subject | Compartment models | es_ES |
dc.subject | Radon descendents | es_ES |
dc.subject.classification | INGENIERIA NUCLEAR | es_ES |
dc.title | Developing a novelty method to estimate Radon doses in a Waste Water pre-Treatment Plant | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.radphyschem.2018.09.009 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F035/ES/BIOINGENIERIA DE LAS RADIACIONES IONIZANTES. BIORA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Martinez-Ferri, JE.; Juste Vidal, BJ.; Verdú Martín, GJ.; Miró Herrero, R.; Ortiz Moragón, J.; Martorell Alsina, SS. (2019). Developing a novelty method to estimate Radon doses in a Waste Water pre-Treatment Plant. Radiation Physics and Chemistry. 155:323-327. https://doi.org/10.1016/j.radphyschem.2018.09.009 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.radphyschem.2018.09.009 | es_ES |
dc.description.upvformatpinicio | 323 | es_ES |
dc.description.upvformatpfin | 327 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 155 | es_ES |
dc.relation.pasarela | S\408126 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Durridge Radon Instrumentation, 2015. RAD 7 Radon Detector, user manual. DURRIDGE Company 〈https://durridge.com/products/rad7-radon-detector/〉. | es_ES |
dc.description.references | Forkapić, S., Mrđa, D., Vesković, M., Todorović, N., Bikit, K., Nikolov, J., Hansman, J., 2012. Radon equilibrium measurement in the air. In: Proceedings of the Paper Presented at First East European Radon Symposium–FERAS. | es_ES |
dc.description.references | Zhu, H., Li, J., Qiu, R., Pan, Y., Wu, Z., Li, C., & Zhang, H. (2018). Establishment of detailed respiratory tract model and Monte Carlo simulation of radon progeny caused dose. Journal of Radiological Protection, 38(3), 990-1012. doi:10.1088/1361-6498/aac987 | es_ES |
dc.description.references | Marsh, J. W., Laurier, D., & Tirmarche, M. (2017). RADON DOSIMETRY FOR WORKERS: ICRP’S APPROACH. Radiation Protection Dosimetry, 177(4), 466-474. doi:10.1093/rpd/ncx065 | es_ES |
dc.description.references | Martinez, J. E., Juste, B., Ortiz, J., Martorell, S., & Verdu, G. (2017). Air radon equilibrium factor measurement in a Waste Water Pre-Treatment Plant. Radiation Physics and Chemistry, 140, 20-24. doi:10.1016/j.radphyschem.2017.03.011 | es_ES |
dc.description.references | Ramola, R. C., Prasad, M., Kandari, T., Pant, P., Bossew, P., Mishra, R., & Tokonami, S. (2016). Dose estimation derived from the exposure to radon, thoron and their progeny in the indoor environment. Scientific Reports, 6(1). doi:10.1038/srep31061 | es_ES |
dc.description.references | Sánchez, G., & Rodríguez-Díaz, J. M. (2006). Optimal design and mathematical model applied to establish bioassay programs. Radiation Protection Dosimetry, 123(4), 457-463. doi:10.1093/rpd/ncl499 | es_ES |