- -

Sensitivity analysis and parameterization of two agricultural models in cauliflower crops

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sensitivity analysis and parameterization of two agricultural models in cauliflower crops

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lidón, Antonio es_ES
dc.contributor.author Ginestar Peiro, Damián es_ES
dc.contributor.author Carlos Alberola, Sofía es_ES
dc.contributor.author Sanchez de Oleo, Carlos es_ES
dc.contributor.author Jaramillo, Claudia es_ES
dc.contributor.author Ramos, Carlos es_ES
dc.date.accessioned 2021-01-29T04:31:06Z
dc.date.available 2021-01-29T04:31:06Z
dc.date.issued 2019 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160216
dc.description.abstract [EN] Aim of study: The development of a procedure to calibrate the LEACHM and EU-Rotate N models for simulating water and nitrogen dynamics in cauliflower crops. Area of study: Calibration was performed using experimental data obtained from measurements in a cauliflower crop sited in Valencia (Spain) region. Material and methods: A procedure based on generalized sensitivity indices for time-dependent outputs was used to determine the most influencing model parameters, in order to reduce the number of parameters to be calibrated and to avoid overparameterization. The most influencing parameters were introduced in an optimization process that uses the experimental measurements of soil water and nitrate content to determine its optimal value and obtain calibrated models. Main results: After this analysis, the most important hydraulic parameters found were the coefficients of Campbell¿s equation for the LEACHM model and the soil water content at field capacity and drainage coefficient for the EU-Rotate_N model. For the N cycle, the most influencing parameters were those related with the nitrification, humus mineralization rate and residue decomposition for both models. Both calibrated models provided good simulation of soil water content with an error between 5-7%. However, larger errors in soil-nitrate content simulation were found, mainly in the period corresponding to the crop residues incorporation. The prediction of the calibrated models in a different plot gave error values of about 7-9% for soil water content, but for soil nitrate content errors computed were 34% and 58%. Research highlights: After calibration, both models can be used to optimize the farmer water management and fertilization practices in horticultural crops, although in the N case further studies should be performed. es_ES
dc.description.sponsorship Spanish Ministerio de Economia y Competitividad, INIA RTA 2011-00136-C04-01 es_ES
dc.language Inglés es_ES
dc.publisher Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria es_ES
dc.relation.ispartof Spanish Journal of Agricultural Research (Online) es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Soil water content es_ES
dc.subject Soil nitrogen es_ES
dc.subject Global sensitivity analysis es_ES
dc.subject Model calibration es_ES
dc.subject Brassica oleracea es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification EDAFOLOGIA Y QUIMICA AGRICOLA es_ES
dc.subject.classification INGENIERIA NUCLEAR es_ES
dc.title Sensitivity analysis and parameterization of two agricultural models in cauliflower crops es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.5424/sjar/2019174-15314 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RTA2011-00136-C04-01/ES/Integración de medidas de suelo, planta y modelos de simulación para el manejo eficiente del nitrógeno en los cultivos hortícolas/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Lidón, A.; Ginestar Peiro, D.; Carlos Alberola, S.; Sanchez De Oleo, C.; Jaramillo, C.; Ramos, C. (2019). Sensitivity analysis and parameterization of two agricultural models in cauliflower crops. Spanish Journal of Agricultural Research (Online). 17(4):1-16. https://doi.org/10.5424/sjar/2019174-15314 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.5424/sjar/2019174-15314 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2171-9292 es_ES
dc.relation.pasarela S\405299 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Allen RG, Pereira LS, Raes D, Smith M, 1998. Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrig Drain Paper nº 56, Roma. es_ES
dc.description.references Campbell G, 1974. A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci 117: 311-314. es_ES
dc.description.references Cannavo P, Recous S, Parnaudeau V, Reau R, 2008. Modeling N dynamics to assess environmental impacts of cropped soils. Adv Agron 97: 131-174. es_ES
dc.description.references Childs SW, Hanks RJ, 1975. Model of soil salinity effects on crop growth. Soil Sci Soc Am Proc 39: 617-622. es_ES
dc.description.references Doltra J, Muñoz P, 2010. Simulation of nitrogen leaching from a fertigated crop rotation in a Mediterranean climate using the EU-Rotate N and Hydrus-2D models. Agric Water Manag 97 (2): 277-285. es_ES
dc.description.references Fang Q, Ma L, Yu Q, Malone RW, Saseendran SA, Ahuja LR, 2008. Modeling nitrogen and water management effects in a wheat-maize double-cropping system. J Environ Qual 37 (6): 2232-2242. es_ES
dc.description.references Greenwood DJ, Gastal F, Lemaire G, Draycott A, Millard P, Neeteson JJ, 1991. Growth rate and % N of field grown crops: Theory and experiments. Ann Bot 67: 181-190. es_ES
dc.description.references Hansen S, Jensen HE, Nielsen NE, Svendsen H, 1991. Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY. Fert Res 27: 245-259. es_ES
dc.description.references Hutson JL, Cass A, 1987. A retentivity function for use in soil-water simulation models. J Soil Sci 38: 105-113. es_ES
dc.description.references Hutson JL, Wagenet RJ, 1991. Simulating nitrogen dynamics in soils using a deterministic model. Soil Use Manage 7: 74-78. es_ES
dc.description.references Jabro JD, Hutson JL, Jabro AD, 2011. Parameterizing LEACHM model for simulating water drainage fluxes and nitrate leaching losses. In: Methods of introducing system models into agricultural research; Ahuja LR & Ma L (eds.). pp: 95-115. Am Soc Agron, Crop Sci Soc Am, Wisconsin, USA. es_ES
dc.description.references Jaramillo C, 2016. Mineralización de la gallinaza y de los restos de cosecha en el suelo. Aplicación al cultivo de coliflor en la huerta de Valencia. Doctoral thesis, Univ. Politécnica, Valencia, Spain. es_ES
dc.description.references Johnsson H, Bergstrom L, Jansson PE, Paustian K, 1987. Simulated nitrogen dynamics and losses in a layered agricultural soil. Agric Ecosyst Environ 18 (4): 333-356. es_ES
dc.description.references Jung YW, Oh DS, Kim M, Park JW, 2010. Calibration of LEACHN model using LH-OAT sensitivity analysis. Nutr Cycl Agroecosys 87: 261-275. es_ES
dc.description.references Kersebaum KC, Hecker JM, Mirschel W, Wegehenkel M, 2007. Modelling water and nutrient dynamics in soilcrop systems: a comparison of simulation models applied on common data sets. In: Modelling water and nutrient dynamics in soil-crop systems; Kersebaum KC et al. (eds.). pp: 1-17. Springer, Dordrecht. es_ES
dc.description.references Lagarias JC, Reeds JA, Wright MH, Wright PE, 1998. Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J Optimiz 9: 112-147. es_ES
dc.description.references Lamboni M, 2009. Multivariate global sensitivity analysis for dynamic crop models. Field Crop Res 113: 312-320. es_ES
dc.description.references Lamboni M, Monod H, Makowki D, 2011. Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models. Reliab Eng Syst Safe 96: 450-459. es_ES
dc.description.references Lidón A, Lado L, Berbegall F, Ramos C, 2011. Influencia de la calibración de los parámetros hidráulicos del modelo EU-Rotate_N en el balance de N en un cultivo de col china. Actas Hort 61: 45-51. es_ES
dc.description.references Lidón A, Ramos C, Ginestar D, Contreras W, 2013. Assessment of LEACHN and a simple compartmental model to simulate nitrogen dynamics in citrus orchards. Agric Water Manag 121: 42-53. es_ES
dc.description.references Mahmood B, Tillman R, 2015. Sensitivity of LEACHN model predictions to changes in Nitrogen transformation rate constants and bulk density. T ASABE 58: 353-366. es_ES
dc.description.references Makowski D, Hillier J, Wallach B, Andrieu B, Jeuffroy MH, 2006. Parameter estimation for crop models. In: Working with dynamic crop models; Wallach D et al. (eds.). pp: 101-149. Elsevier, Amsterdam. es_ES
dc.description.references Monod H, Naud C, Makowski D, 2006. Uncertainty and sensitivity analysis for crop models. In: Working with dynamic crop models; Wallach D et al. (eds.). pp: 55-99. Elsevier, Amsterdam. es_ES
dc.description.references Nendel C, Venezia A, Piro F, Ren T, Lillywhite RD, Rahn CR, 2013. The performance of the EU-Rotate_N model in predicting the growth and nitrogen uptake of rotations of field vegetable crops in a Mediterranean environment. J Agric Sci 151: 538-555. es_ES
dc.description.references Nimah MN, Hanks RJ, 1973. Model for estimating soil water, plant, and atmospheric interrelations: I. Description and sensitivity. Soil Sci Soc Am J 37(4): 522-527. es_ES
dc.description.references Rahn C, Zhang K, Lillywhite R, Ramos C, Doltra J, De Paz JM, Riley H, Fink M, Nendel C, Thorup K, Pedersen A, Piro F, Venezia A, Firth C, Schmutz U, Rayns F, Strohmeyer K, 2010. EU-Rotate_N - a decision support system - to predict environmental and economic consequences of the management of nitrogen fertiliser in crop rotations. Eur J Hortic Sci 75: 20-32. es_ES
dc.description.references Ramos C, 2014. Integración de medidas de suelo, planta y modelos de simulación para el manejo eficiente del nitrógeno en los cultivos hortícolas. Project RTA2011-00136-C04-01, Final Report, INIA, Madrid, Spain. es_ES
dc.description.references Ritchie JT, 1998. Soil water balance and plant water stress. In: Understanding options for agricultural production; Tsuji GY et al. (eds.). pp: 41-54. Kluwer Acad Press, Dordrecht. es_ES
dc.description.references Ritter A, Muñoz-Carpena R, 2013. Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments. J Hydrol 480: 33-45. es_ES
dc.description.references Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S, 2008. Global sensitivity analysis: the primer. John Wiley & Sons Ltd, Chichester, England. 312 pp. es_ES
dc.description.references Sánchez de Oleo C, 2016. Estimación de parámetros en modelos de transporte de agua y nitrógeno en el suelo. Doctoral thesis, Univ. Politécnica, Valencia, Spain. es_ES
dc.description.references Saxton KE, Rawls WJ, Romberger JS, Papendick RI, 1986. Estimating generalized soil-water characteristics from texture. Soil Sci Soc Am J 50 (4): 1031-1036. es_ES
dc.description.references Schmied B, Abbaspour K, Schulin R, 2000. Inverse estimation of parameters in a nitrogen model using field data. Soil Sci Soc Am J 64: 533-542. es_ES
dc.description.references Sogbedji JM, Van Es HM, Melkonian J, Schindelbeck R, 2006. Evaluation of the PNM model for simulating drain flow nitrate-N concentration under manure-fertilized maize. Plant Soil 282: 343-360. es_ES
dc.description.references Søgaard HT, Sommer SG, Hutchings NJ, Huijsmans JFM, Bussink DW, Nicholson F, 2002. Ammonia volatilization from field-applied animal slurry: the ALFAM model. Atmos Environ 36: 3309-3319. es_ES
dc.description.references Soto F, Gallardo M, Giménez C, Peña-Fleitas T, Thompson RB, 2014. Simulation of tomato growth, water and N dynamics using the EU-Rotate_N model in Mediterranean greenhouses with drip irrigation and fertigation. Agric Water Manag 132: 46-59. es_ES
dc.description.references Stella T, Frasso N, Negrini G, Bregaglio S, Cappelli G, Acutis M, Confalonieri R, 2014. Model simplification and development via reuse, sensitivity analysis and composition: a case study in crop modelling. Environ Modell Softw 59: 44-58. es_ES
dc.description.references Suarez-Rey EM, Romero-Gámez M, Giménez C, Thompson RB, Gallardo M, 2016. Use of EU-Rotate_N and CropSyst models to predict yield, growth and water and N dynamics of fertigated leafy vegetables in a Mediterranean climate and to determine N fertilizer requirements. Agric Syst 149: 150-164. es_ES
dc.description.references Suárez-Rey EM, Gallardo M, Romero-Gámez M, Giménez C, Rueda FJ, 2019. Sensitivity and uncertainty analysis in agro-hydrological modelling of drip fertigated lettuce crops under Mediterranean conditions. Comput Electron Agr 162: 630-650. es_ES
dc.description.references Sun Y, Hu K, Fan Z, Wei Y, Lin S, Wang J, 2013. Simulating the fate of nitrogen and optimizing water and nitrogen management of greenhouse tomato in North China using the EU-Rotate_N model. Agric Water Manag 128: 72-84. es_ES
dc.description.references Wagenet RJ, Hutson JL, 1989. LEACHM: Leaching Estimation and Chemistry Model: A process based model of water and solute movement, transformations, plant uptake and chemical reactions in the unsaturated zone, vers. 2. Water Resour Inst, Cornell Univ, Ithaca, NY. es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES
dc.subject.ods 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem