- -

First successful backcrossing towards eggplant (Solanum melongena) of a New World species, the silverleaf nightshade (S-elaeagnifolium), and characterization of interspecific hybrids and backcrosses

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

First successful backcrossing towards eggplant (Solanum melongena) of a New World species, the silverleaf nightshade (S-elaeagnifolium), and characterization of interspecific hybrids and backcrosses

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Fortea, Edgar es_ES
dc.contributor.author Gramazio, Pietro es_ES
dc.contributor.author Vilanova Navarro, Santiago es_ES
dc.contributor.author Fita, Ana es_ES
dc.contributor.author Mangino, Giulio es_ES
dc.contributor.author Villanueva-Párraga, Gloria es_ES
dc.contributor.author Arrones-Olmo, Andrea es_ES
dc.contributor.author Knapp, Sandra es_ES
dc.contributor.author Prohens Tomás, Jaime es_ES
dc.contributor.author Plazas Ávila, María de la O es_ES
dc.date.accessioned 2021-01-29T04:31:19Z
dc.date.available 2021-01-29T04:31:19Z
dc.date.issued 2019-02-27 es_ES
dc.identifier.issn 0304-4238 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160221
dc.description.abstract [EN] Silverleaf nightshade (Solanum elaeagnifolium Cav.) is a drought tolerant invasive weed native to the New World. Despite its interest for common eggplant (S. melongena L.) breeding, up to now no success has been obtained in introgression breeding of eggplant with American Solanum species. Using an interspecific hybrid between common eggplant and S. elaeagnifolium as maternal parent we were able to obtain several fruits with viable seed after pollination with S. melongena pollen. Twenty individuals of the first backcross (BC1) generation were crossed again to the S. melongena parent and second backcross (BC2) seed was obtained for 17 of them, suggesting that most of the genome of S. elaeagnifolium is likely to be represented in the set of BC2 families. Five plants of each of the two parents, interspecific hybrid and BC1 generation were characterized with morphological descriptors and for pollen viability. The interspecific hybrid was intermediate among parents, although in overall morphological characteristics more similar to the S. elaeagnifolium parent. However, pollen viability of the hybrid was very low (2.6%). The BC1 generation was intermediate in characteristics between the hybrid and the S. melongena parent, with pollen viability increasing to an average of 19.4%. The root system of the inter specific hybrid indicated that it is able to explore larger areas of the soil than the S. melongena parent. The phenolics profile of the fruit of the two parents and hybrid revealed a higher diversity in phenolic constituents in S. elaeagnifolium compared to S. melongena, where the major phenolic compound was chlorogenic acid, while the interspecific hybrid was intermediate. By using flow cytometry it was found that S. elaeagnifolium, S. melongena, and their interspecific hybrid were diploid, although the genome size of S. elaeagnifolium was slightly smaller than that of S. melongena. Our results represent the first report of successful development of backcross generations of common eggplant with a New World Solarium species. This makes available a relatively unexplored, phylogenetically distant genepool for eggplant breeding. The backcross materials obtained can make a relevant contribution to developing new eggplant cultivars with new nutritional and environmental properties. es_ES
dc.description.sponsorship This work was undertaken as part of the initiative "Adapting Agriculture to Climate Change: Collecting, Protecting and Preparing Crop Wild Relatives", which is supported by the Government of Norway. The project is managed by the Global Crop Diversity Trust with the Millennium Seed Bank of the Royal Botanic Gardens, Kew and implemented in partnership with national and international gene banks and plant breeding institutes around the world. For further information see the project website: http://www.cwrdiversity.org/.Funding was also received from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No. 677379 (G2P-SOL project: Linking genetic resources, genomes and phenotypes of Solanaceous crops) and from Spanish Ministerio de Economia, Industria y Competitividad and Fondo Europeo de Desarrollo Regional (grant AGL2015-64755-R from MINECO/FEDER). Edgar Garcia-Fortea is grateful to Universitat Politecnica de Valencia for a pre-doctoral (Programa FPI de la UPV-Subprograma 1/2017 call) contract. Giulio Mangino is grateful to Conselleria d'Educacio, Investigacio, Cultura i Esport de la Generalitat Valenciana for a predoctoral grant within the Santiago Grisolia programme (GRISOLIAP/2016/012). Mariola Plazas is grateful to Spanish Ministerio de Economia, Industria y Competitividad for a postdoctoral grant within the Juan de la Cierva programme (FCJI-2015-24835), and to Conselleria d'Educacio, Investigacio, Cultura i Esport de la Generalitat Valenciana and Fons Social Europeu for a postdoctoral grant (APOSTD/2018/014). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Scientia Horticulturae es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Backcrosses es_ES
dc.subject Introgression breeding es_ES
dc.subject Flow cytometry es_ES
dc.subject Phenolics profile es_ES
dc.subject Solanum elaeagnifolium es_ES
dc.subject Solanum melongena es_ES
dc.subject.classification GENETICA es_ES
dc.title First successful backcrossing towards eggplant (Solanum melongena) of a New World species, the silverleaf nightshade (S-elaeagnifolium), and characterization of interspecific hybrids and backcrosses es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.scienta.2018.11.018 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/677379/EU/Linking genetic resources, genomes and phenotypes of Solanaceous crops/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-64755-R/ES/MEJORA GENETICA DE LA CALIDAD FUNCIONAL Y APARENTE DE LA BERENJENA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FJCI-2015-24835/ES/FJCI-2015-24835/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GRISOLIA%2F2016%2F012/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2018%2F014/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.description.bibliographicCitation García-Fortea, E.; Gramazio, P.; Vilanova Navarro, S.; Fita, A.; Mangino, G.; Villanueva-Párraga, G.; Arrones-Olmo, A.... (2019). First successful backcrossing towards eggplant (Solanum melongena) of a New World species, the silverleaf nightshade (S-elaeagnifolium), and characterization of interspecific hybrids and backcrosses. Scientia Horticulturae. 246:563-573. https://doi.org/10.1016/j.scienta.2018.11.018 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.scienta.2018.11.018 es_ES
dc.description.upvformatpinicio 563 es_ES
dc.description.upvformatpfin 573 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 246 es_ES
dc.relation.pasarela S\400287 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Research Council of Norway es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Acosta, M. C., Bernardello, G., Guerra, M., & Moscone, E. A. (2005). Karyotype analysis in several South American species ofSolanumandLycianthes rantonnei(Solanaceae). TAXON, 54(3), 713-723. doi:10.2307/25065428 es_ES
dc.description.references Afful, N. T., Nyadanu, D., Akromah, R., Amoatey, H. M., Annor, C., & Diawouh, R. G. (2018). Evaluation of crossability studies between selected eggplant accessions with wild relatives S. torvum, S. anguivi and S. aethopicum (Shum group). Journal of Plant Breeding and Crop Science, 10(1), 1-12. doi:10.5897/jpbcs2017.0695 es_ES
dc.description.references Arao, T., Takeda, H., & Nishihara, E. (2008). Reduction of cadmium translocation from roots to shoots in eggplant (Solanum melongena) by grafting ontoSolanum torvumrootstock. Soil Science and Plant Nutrition, 54(4), 555-559. doi:10.1111/j.1747-0765.2008.00269.x es_ES
dc.description.references Abdul-Baki, A. A. (1992). Determination of Pollen Viability in Tomatoes. Journal of the American Society for Horticultural Science, 117(3), 473-476. doi:10.21273/jashs.117.3.473 es_ES
dc.description.references Aubriot, X., Singh, P., & Knapp, S. (2016). Tropical Asian species show that the Old World clade of ‘spiny solanums’ (SolanumsubgenusLeptostemonum pro parte: Solanaceae) is not monophyletic. Botanical Journal of the Linnean Society, 181(2), 199-223. doi:10.1111/boj.12412 es_ES
dc.description.references Chen, X., Zhang, J., Chen, Y., Li, Q., Chen, F., Yuan, L., & Mi, G. (2013). Changes in root size and distribution in relation to nitrogen accumulation during maize breeding in China. Plant and Soil, 374(1-2), 121-130. doi:10.1007/s11104-013-1872-0 es_ES
dc.description.references Christodoulakis, N. S., Lampri, P.-N., & Fasseas, C. (2009). Structural and cytochemical investigation of the leaf of silverleaf nightshade (Solanum elaeagnifolium), a drought-resistant alien weed of the Greek flora. Australian Journal of Botany, 57(5), 432. doi:10.1071/bt08210 es_ES
dc.description.references Collonnier, C., Fock, I., Mariska, I., Servaes, A., Vedel, F., Siljak-Yakovlev, S., … Sihachakr, D. (2003). GISH confirmation of somatic hybrids between Solanum melongena and S. torvum: assessment of resistance to both fungal and bacterial wilts. Plant Physiology and Biochemistry, 41(5), 459-470. doi:10.1016/s0981-9428(03)00054-8 es_ES
dc.description.references Daunay, M. C., Chaput, M. H., Sihachakr, D., Allot, M., Vedel, F., & Ducreux, G. (1993). Production and characterization of fertile somatic hybrids of eggplant (Solanum melongena L.) with Solanum aethiopicum L. Theoretical and Applied Genetics, 85-85(6-7), 841-850. doi:10.1007/bf00225027 es_ES
dc.description.references Dempewolf, H., Eastwood, R. J., Guarino, L., Khoury, C. K., Müller, J. V., & Toll, J. (2014). Adapting Agriculture to Climate Change: A Global Initiative to Collect, Conserve, and Use Crop Wild Relatives. Agroecology and Sustainable Food Systems, 38(4), 369-377. doi:10.1080/21683565.2013.870629 es_ES
dc.description.references Dixon, R. A., & Harrison, M. J. (1990). Activation, Structure, and Organization of Genes Involved in Microbial Defense in Plants. Advances in Genetics, 165-234. doi:10.1016/s0065-2660(08)60527-1 es_ES
dc.description.references Dong, Z. Y., Wang, Y. M., Zhang, Z. J., Shen, Y., Lin, X. Y., Ou, X. F., … Liu, B. (2006). Extent and pattern of DNA methylation alteration in rice lines derived from introgressive hybridization of rice and Zizania latifolia Griseb. Theoretical and Applied Genetics, 113(2), 196-205. doi:10.1007/s00122-006-0286-2 es_ES
dc.description.references Dpooležel, J., Binarová, P., & Lcretti, S. (1989). Analysis of Nuclear DNA content in plant cells by Flow cytometry. Biologia Plantarum, 31(2), 113-120. doi:10.1007/bf02907241 es_ES
dc.description.references Gleddie, S., Keller, W. A., & Setterfield, G. (1986). Production and characterization of somatic hybrids between Solanum melongena L. and S. sisymbriifolium Lam. Theoretical and Applied Genetics, 71(4), 613-621. doi:10.1007/bf00264265 es_ES
dc.description.references Gramazio, P., Prohens, J., Plazas, M., Mangino, G., Herraiz, F. J., & Vilanova, S. (2017). Development and Genetic Characterization of Advanced Backcross Materials and An Introgression Line Population of Solanum incanum in a S. melongena Background. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01477 es_ES
dc.description.references GRAMAZIO, P., PROHENS, J., PLAZAS, M., MANGINO, G., HERRAIZ, F. J., GARCÍA-FORTEA, E., & VILANOVA, S. (2018). Genomic Tools for the Enhancement of Vegetable Crops: A Case in Eggplant. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(1), 1-13. doi:10.15835/nbha46110936 es_ES
dc.description.references Hahlbrock, K., & Scheel, D. (1989). Physiology and Molecular Biology of Phenylpropanoid Metabolism. Annual Review of Plant Physiology and Plant Molecular Biology, 40(1), 347-369. doi:10.1146/annurev.pp.40.060189.002023 es_ES
dc.description.references Heslop-Harrison, J., Heslop-Harrison, Y., & Shivanna, K. R. (1984). The evaluation of pollen quality, and a further appraisal of the fluorochromatic (FCR) test procedure. Theoretical and Applied Genetics, 67(4), 367-375. doi:10.1007/bf00272876 es_ES
dc.description.references Isshiki, S., & Taura, T. (2003). Fertility restoration of hybrids betweenSolanum melongenaL. andS. aethiopicumL. Gilo Group by chromosome doubling and cytoplasmic effect on pollen fertility. Euphytica, 134(2), 195-201. doi:10.1023/b:euph.0000003883.39440.6d es_ES
dc.description.references Jarl, C. I., Rietveld, E. M., & de Haas, J. M. (1999). Transfer of fungal tolerance through interspecific somatic hybridisation between Solanum melongena and S. torvum. Plant Cell Reports, 18(9), 791-796. doi:10.1007/s002990050663 es_ES
dc.description.references Kashyap, V., Vinod Kumar, S., Collonnier, C., Fusari, F., Haicour, R., Rotino, G. ., … Rajam, M. . (2003). Biotechnology of eggplant. Scientia Horticulturae, 97(1), 1-25. doi:10.1016/s0304-4238(02)00140-1 es_ES
dc.description.references Kaushik, P., Andújar, I., Vilanova, S., Plazas, M., Gramazio, P., Herraiz, F., … Prohens, J. (2015). Breeding Vegetables with Increased Content in Bioactive Phenolic Acids. Molecules, 20(10), 18464-18481. doi:10.3390/molecules201018464 es_ES
dc.description.references Kaushik, P., Prohens, J., Vilanova, S., Gramazio, P., & Plazas, M. (2016). Phenotyping of Eggplant Wild Relatives and Interspecific Hybrids with Conventional and Phenomics Descriptors Provides Insight for Their Potential Utilization in Breeding. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00677 es_ES
dc.description.references King, S. R., Davis, A. R., Zhang, X., & Crosby, K. (2010). Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Scientia Horticulturae, 127(2), 106-111. doi:10.1016/j.scienta.2010.08.001 es_ES
dc.description.references Knapp, S., Sagona, E., Carbonell, A. K. Z., & Chiarini, F. (2017). A revision of the Solanum elaeagnifolium clade (Elaeagnifolium clade; subgenus Leptostemonum, Solanaceae). PhytoKeys, 84, 1-104. doi:10.3897/phytokeys.84.12695 es_ES
dc.description.references Knapp, S., Vorontsova, M. S., & Prohens, J. (2013). Wild Relatives of the Eggplant (Solanum melongena L.: Solanaceae): New Understanding of Species Names in a Complex Group. PLoS ONE, 8(2), e57039. doi:10.1371/journal.pone.0057039 es_ES
dc.description.references Kouassi, B., Prohens, J., Gramazio, P., Kouassi, A. B., Vilanova, S., Galán-Ávila, A., … Plazas, M. (2016). Development of backcross generations and new interspecific hybrid combinations for introgression breeding in eggplant (Solanum melongena). Scientia Horticulturae, 213, 199-207. doi:10.1016/j.scienta.2016.10.039 es_ES
dc.description.references Kreike, C. M., & Stiekema, W. J. (1997). Reduced recombination and distorted segregation in aSolanum tuberosum(2x) ×S.spegazzinii(2x) hybrid. Genome, 40(2), 180-187. doi:10.1139/g97-026 es_ES
dc.description.references Lester, R. N. (1986). TAXONOMY OF SCARLET EGGPLANTS, SOLANUM AETHIOPICUM L. Acta Horticulturae, (182), 125-132. doi:10.17660/actahortic.1986.182.15 es_ES
dc.description.references LESTER, R. (1998). Embryo and Endosperm Function and Failure inSolanumSpecies and Hybrids. Annals of Botany, 82(4), 445-453. doi:10.1006/anbo.1998.0695 es_ES
dc.description.references Liu, J., Zheng, Z., Zhou, X., Feng, C., & Zhuang, Y. (2014). Improving the resistance of eggplant (Solanum melongena) to Verticillium wilt using wild species Solanum linnaeanum. Euphytica, 201(3), 463-469. doi:10.1007/s10681-014-1234-x es_ES
dc.description.references Mekki, M. (2007). Biology, distribution and impacts of silverleaf nightshade (Solanum elaeagnifolium Cav.). EPPO Bulletin, 37(1), 114-118. doi:10.1111/j.1365-2338.2007.01094.x es_ES
dc.description.references Meyer, R. S., Karol, K. G., Little, D. P., Nee, M. H., & Litt, A. (2012). Phylogeographic relationships among Asian eggplants and new perspectives on eggplant domestication. Molecular Phylogenetics and Evolution, 63(3), 685-701. doi:10.1016/j.ympev.2012.02.006 es_ES
dc.description.references Noda, N., Kanno, Y., Kato, N., Kazuma, K., & Suzuki, M. (2004). Regulation of gene expression involved in flavonol and anthocyanin biosynthesis during petal development in lisianthus (Eustoma grandiflorum). Physiologia Plantarum, 122(3), 305-313. doi:10.1111/j.1399-3054.2004.00407.x es_ES
dc.description.references Plazas, M., Prohens, J., Cuñat, A., Vilanova, S., Gramazio, P., Herraiz, F., & Andújar, I. (2014). Reducing Capacity, Chlorogenic Acid Content and Biological Activity in a Collection of Scarlet (Solanum aethiopicum) and Gboma (S. macrocarpon) Eggplants. International Journal of Molecular Sciences, 15(10), 17221-17241. doi:10.3390/ijms151017221 es_ES
dc.description.references Plazas, M., Vilanova, S., Gramazio, P., Rodríguez-Burruezo, A., Fita, A., Herraiz, F. J., … Prohens, J. (2016). Interspecific Hybridization between Eggplant and Wild Relatives from Different Genepools. Journal of the American Society for Horticultural Science, 141(1), 34-44. doi:10.21273/jashs.141.1.34 es_ES
dc.description.references Prabhu, M., Natarajan, S., Veeraragavathatham, D., & Pugalendhi, L. (2009). The biochemical basis of shoot and fruit borer resistance in interspecific progenies of brinjal (Solanum melongena). EurAsian Journal of Biosciences, 50-57. doi:10.5053/ejobios.2009.3.0.7 es_ES
dc.description.references Prohens, J., Gramazio, P., Plazas, M., Dempewolf, H., Kilian, B., Díez, M. J., … Vilanova, S. (2017). Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica, 213(7). doi:10.1007/s10681-017-1938-9 es_ES
dc.description.references Prohens, J., Plazas, M., Raigón, M. D., Seguí-Simarro, J. M., Stommel, J. R., & Vilanova, S. (2012). Characterization of interspecific hybrids and first backcross generations from crosses between two cultivated eggplants (Solanum melongena and S. aethiopicum Kumba group) and implications for eggplant breeding. Euphytica, 186(2), 517-538. doi:10.1007/s10681-012-0652-x es_ES
dc.description.references Prohens, J., Whitaker, B. D., Plazas, M., Vilanova, S., Hurtado, M., Blasco, M., … Stommel, J. R. (2013). Genetic diversity in morphological characters and phenolic acids content resulting from an interspecific cross between eggplant,Solanum melongena, and its wild ancestor (S. incanum). Annals of Applied Biology, 162(2), 242-257. doi:10.1111/aab.12017 es_ES
dc.description.references Ranil, R. H. G., Niran, H. M. L., Plazas, M., Fonseka, R. M., Fonseka, H. H., Vilanova, S., … Prohens, J. (2015). Improving seed germination of the eggplant rootstock Solanum torvum by testing multiple factors using an orthogonal array design. Scientia Horticulturae, 193, 174-181. doi:10.1016/j.scienta.2015.07.030 es_ES
dc.description.references Sabatino, L., Iapichino, G., D’Anna, F., Palazzolo, E., Mennella, G., & Rotino, G. L. (2018). Hybrids and allied species as potential rootstocks for eggplant: Effect of grafting on vigour, yield and overall fruit quality traits. Scientia Horticulturae, 228, 81-90. doi:10.1016/j.scienta.2017.10.020 es_ES
dc.description.references Scaldaferro, M., Chiarini, F., Santiñaque, F. F., Bernardello, G., & Moscone, E. A. (2012). Geographical pattern and ploidy levels of the weed Solanum elaeagnifolium (Solanaceae) from Argentina. Genetic Resources and Crop Evolution, 59(8), 1833-1847. doi:10.1007/s10722-012-9807-9 es_ES
dc.description.references Shichijo, C., Hamada, T., Hiraoka, M., Johnson, C., & Hashimoto, T. (1993). Enhancement of red-light-induced anthocyanin synthesis in sorghum first internodes by moderate low temperature given in the pre-irradiation culture period. Planta, 191(2). doi:10.1007/bf00199755 es_ES
dc.description.references Sihachakr, D., Haicour, R., Chaput, M.-H., Barrientos, E., Ducreux, G., & Rossignol, L. (1989). Somatic hybrid plants produced by electrofusion between Solanum melongena L. and Solanum torvum Sw. Theoretical and Applied Genetics, 77(1), 1-6. doi:10.1007/bf00292307 es_ES
dc.description.references Stommel, J. R., & Whitaker, B. D. (2003). Phenolic Acid Content and Composition of Eggplant Fruit in a Germplasm Core Subset. Journal of the American Society for Horticultural Science, 128(5), 704-710. doi:10.21273/jashs.128.5.0704 es_ES
dc.description.references Toppino, L., Valè, G., & Rotino, G. L. (2008). Inheritance of Fusarium wilt resistance introgressed from Solanum aethiopicum Gilo and Aculeatum groups into cultivated eggplant (S. melongena) and development of associated PCR-based markers. Molecular Breeding, 22(2), 237-250. doi:10.1007/s11032-008-9170-x es_ES
dc.description.references Van der Weerden, G. M., & Barendse, G. W. M. (2007). A WEB-BASED SEARCHABLE DATABASE DEVELOPED FOR THE EGGNET PROJECT AND APPLIED TO THE RADBOUD UNIVERSITY SOLANACEAE DATABASE. Acta Horticulturae, (745), 503-506. doi:10.17660/actahortic.2007.745.37 es_ES
dc.description.references Varoquaux, F., Blanvillain, R., Delseny, M., & Gallois, P. (2000). Less is better: new approaches for seedless fruit production. Trends in Biotechnology, 18(6), 233-242. doi:10.1016/s0167-7799(00)01448-7 es_ES
dc.description.references Vorontsova, M. S., Stern, S., Bohs, L., & Knapp, S. (2013). African spinySolanum(subgenusLeptostemonum, Solanaceae): a thorny phylogenetic tangle. Botanical Journal of the Linnean Society, 173(2), 176-193. doi:10.1111/boj.12053 es_ES
dc.description.references Wall, J. R. (1970). EXPERIMENTAL INTROGRESSION IN THE GENUSPHASEOLUS.I. EFFECT OF MATING SYSTEMS ON INTERSPECIFIC GENE FLOW. Evolution, 24(2), 356-366. doi:10.1111/j.1558-5646.1970.tb01767.x es_ES
dc.description.references Wang, Y.-M., Dong, Z.-Y., Zhang, Z.-J., Lin, X.-Y., Shen, Y., Zhou, D., & Liu, B. (2005). Extensive de Novo Genomic Variation in Rice Induced by Introgression From Wild Rice (Zizania latifolia Griseb.). Genetics, 170(4), 1945-1956. doi:10.1534/genetics.105.040964 es_ES
dc.description.references Whitaker, B. D., & Stommel, J. R. (2003). Distribution of Hydroxycinnamic Acid Conjugates in Fruit of Commercial Eggplant (Solanum melongena L.) Cultivars. Journal of Agricultural and Food Chemistry, 51(11), 3448-3454. doi:10.1021/jf026250b es_ES
dc.description.references Wu, S.-B., Meyer, R. S., Whitaker, B. D., Litt, A., & Kennelly, E. J. (2012). Antioxidant Glucosylated Caffeoylquinic Acid Derivatives in the Invasive Tropical Soda Apple, Solanum viarum. Journal of Natural Products, 75(12), 2246-2250. doi:10.1021/np300553t es_ES
dc.description.references Zhou, X., Bao, S., Liu, J., Yang, Y., & Zhuang, Y. (2018). Production and characterization of an amphidiploid derived from interspecific hybridization between Solanum melongena L. and Solanum aculeatissimum Jacq. Scientia Horticulturae, 230, 102-106. doi:10.1016/j.scienta.2017.11.024 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem