- -

Biohybrids for spinal cord injury repair

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Biohybrids for spinal cord injury repair

Show simple item record

Files in this item

dc.contributor.author Martínez-Ramos, Cristina es_ES
dc.contributor.author Rodriguez Doblado, Laura es_ES
dc.contributor.author López Mocholi, Eric es_ES
dc.contributor.author Alastrue-Agudo, Ana es_ES
dc.contributor.author Sánchez Petidier, Marina es_ES
dc.contributor.author Giraldo-Reboloso, Esther es_ES
dc.contributor.author Monleón Pradas, Manuel es_ES
dc.contributor.author Moreno-Manzano, Victoria es_ES
dc.date.accessioned 2021-01-30T04:31:26Z
dc.date.available 2021-01-30T04:31:26Z
dc.date.issued 2019-03 es_ES
dc.identifier.issn 1932-6254 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160297
dc.description This is the peer reviewed version of the following article: Martínez-Ramos, C, Doblado, LR, Mocholi, EL, et al. Biohybrids for spinal cord injury repair. J Tissue Eng Regen Med. 2019; 13: 509-521, which has been published in final form at https://doi.org/10.1002/term.2816. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. es_ES
dc.description.abstract [EN] Spinal cord injuries (SCIs) result in the loss of sensory and motor function with massive cell death and axon degeneration. We have previously shown that transplantation of spinal cord-derived ependymal progenitor cells (epSPC) significantly improves functional recovery after acute and chronic SCI in experimental models, via neuronal differentiation and trophic glial cell support. Here, we propose an improved procedure based on transplantation of epSPC in a tubular conduit of hyaluronic acid containing poly (lactic acid) fibres creating a biohybrid scaffold. In vitro analysis showed that the poly (lactic acid) fibres included in the conduit induce a preferential neuronal fate of the epSPC rather than glial differentiation, favouring elongation of cellular processes. The safety and efficacy of the biohybrid implantation was evaluated in a complete SCI rat model. The conduits allowed efficient epSPC transfer into the spinal cord, improving the preservation of the neuronal tissue by increasing the presence of neuronal fibres at the injury site and by reducing cavities and cyst formation. The biohybrid-implanted animals presented diminished astrocytic reactivity surrounding the scar area, an increased number of preserved neuronal fibres with a horizontal directional pattern, and enhanced coexpression of the growth cone marker GAP43. The biohybrids offer an improved method for cell transplantation with potential capabilities for neuronal tissue regeneration, opening a promising avenue for cell therapies and SCI treatment. es_ES
dc.description.sponsorship Secretaria de Estado de Investigacion, Desarrollo e Innovacion, Grant/Award Number: MAT2015-66666-C3-1-R MINECO/FEDER MAT2015-66666-C3-2-R MINECO/FEDER; Spanish Ministry of Education, Culture and Sports through Laura Rodriguez Doblado, Grant/Award Number: FPU15/04975 es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Journal of Tissue Engineering and Regenerative Medicine es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Biomaterial es_ES
dc.subject Hyaluronic acid es_ES
dc.subject Neural differentiation es_ES
dc.subject Poly-lactic fibres es_ES
dc.subject Spinal cord injury es_ES
dc.subject.classification TERMODINAMICA APLICADA (UPV) es_ES
dc.subject.classification MICROBIOLOGIA es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Biohybrids for spinal cord injury repair es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/term.2816 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-66666-C3-2-R/ES/BIOHIBRIDOS PARA LA PROMOCION DEL CRECIMIENTO AXONAL Y LA REGENERACION EN LESION MEDULAR AGUDA Y CRONICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-66666-C3-1-R/ES/BIOHIBRIDOS PARA LA PROMOCION DEL CRECIMIENTO AXONAL Y LA REGENERACION EN EL SISTEMA NERVIOSO CENTRAL Y PERIFERICO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU15%2F04975/ES/FPU15%2F04975/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Martínez-Ramos, C.; Rodriguez Doblado, L.; López Mocholi, E.; Alastrue-Agudo, A.; Sánchez Petidier, M.; Giraldo-Reboloso, E.; Monleón Pradas, M.... (2019). Biohybrids for spinal cord injury repair. Journal of Tissue Engineering and Regenerative Medicine. 13(3):509-521. https://doi.org/10.1002/term.2816 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/term.2816 es_ES
dc.description.upvformatpinicio 509 es_ES
dc.description.upvformatpfin 521 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 3 es_ES
dc.identifier.pmid 30726582 es_ES
dc.relation.pasarela S\399796 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Ahuja, C. S., & Fehlings, M. (2016). Concise Review: Bridging the Gap: Novel Neuroregenerative and Neuroprotective Strategies in Spinal Cord Injury. STEM CELLS Translational Medicine, 5(7), 914-924. doi:10.5966/sctm.2015-0381 es_ES
dc.description.references Alastrue-Agudo, A., Erceg, S., Cases-Villar, M., Bisbal-Velasco, V., Griffeth, R. J., Rodriguez-Jiménez, F. J., & Moreno-Manzano, V. (2014). Experimental Cell Transplantation for Traumatic Spinal Cord Injury Regeneration: Intramedullar or Intrathecal Administration. Methods in Molecular Biology, 23-35. doi:10.1007/978-1-4939-1435-7_3 es_ES
dc.description.references Alastrue-Agudo, A., Rodriguez-Jimenez, F., Mocholi, E., De Giorgio, F., Erceg, S., & Moreno-Manzano, V. (2018). FM19G11 and Ependymal Progenitor/Stem Cell Combinatory Treatment Enhances Neuronal Preservation and Oligodendrogenesis after Severe Spinal Cord Injury. International Journal of Molecular Sciences, 19(1), 200. doi:10.3390/ijms19010200 es_ES
dc.description.references Alfaro-Cervello, C., Soriano-Navarro, M., Mirzadeh, Z., Alvarez-Buylla, A., & Garcia-Verdugo, J. M. (2012). Biciliated ependymal cell proliferation contributes to spinal cord growth. The Journal of Comparative Neurology, 520(15), 3528-3552. doi:10.1002/cne.23104 es_ES
dc.description.references Assunção-Silva, R. C., Gomes, E. D., Sousa, N., Silva, N. A., & Salgado, A. J. (2015). Hydrogels and Cell Based Therapies in Spinal Cord Injury Regeneration. Stem Cells International, 2015, 1-24. doi:10.1155/2015/948040 es_ES
dc.description.references BASSO, D. M., BEATTIE, M. S., & BRESNAHAN, J. C. (1995). A Sensitive and Reliable Locomotor Rating Scale for Open Field Testing in Rats. Journal of Neurotrauma, 12(1), 1-21. doi:10.1089/neu.1995.12.1 es_ES
dc.description.references Bonner, J. F., & Steward, O. (2015). Repair of spinal cord injury with neuronal relays: From fetal grafts to neural stem cells. Brain Research, 1619, 115-123. doi:10.1016/j.brainres.2015.01.006 es_ES
dc.description.references Collins, M. N., & Birkinshaw, C. (2013). Hyaluronic acid based scaffolds for tissue engineering—A review. Carbohydrate Polymers, 92(2), 1262-1279. doi:10.1016/j.carbpol.2012.10.028 es_ES
dc.description.references Donnelly, D. J., & Popovich, P. G. (2008). Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Experimental Neurology, 209(2), 378-388. doi:10.1016/j.expneurol.2007.06.009 es_ES
dc.description.references Erceg, S., Ronaghi, M., Oria, M., García Roselló, M., Aragó, M. A. P., Lopez, M. G., … Stojkovic, M. (2010). Transplanted Oligodendrocytes and Motoneuron Progenitors Generated from Human Embryonic Stem Cells Promote Locomotor Recovery After Spinal Cord Transection. STEM CELLS, 28(9), 1541-1549. doi:10.1002/stem.489 es_ES
dc.description.references Gómez-Villafuertes, R., Rodríguez-Jiménez, F. J., Alastrue-Agudo, A., Stojkovic, M., Miras-Portugal, M. T., & Moreno-Manzano, V. (2015). Purinergic Receptors in Spinal Cord-Derived Ependymal Stem/Progenitor Cells and Their Potential Role in Cell-Based Therapy for Spinal Cord Injury. Cell Transplantation, 24(8), 1493-1509. doi:10.3727/096368914x682828 es_ES
dc.description.references Hesp, Z. C., Goldstein, E. A., Miranda, C. J., Kaspar, B. K., & McTigue, D. M. (2015). Chronic Oligodendrogenesis and Remyelination after Spinal Cord Injury in Mice and Rats. Journal of Neuroscience, 35(3), 1274-1290. doi:10.1523/jneurosci.2568-14.2015 es_ES
dc.description.references Kjell, J., & Olson, L. (2016). Rat models of spinal cord injury: from pathology to potential therapies. Disease Models & Mechanisms, 9(10), 1125-1137. doi:10.1242/dmm.025833 es_ES
dc.description.references Kumar, P., Choonara, Y., Modi, G., Naidoo, D., & Pillay, V. (2015). Multifunctional Therapeutic Delivery Strategies for Effective Neuro-Regeneration Following Traumatic Spinal Cord Injury. Current Pharmaceutical Design, 21(12), 1517-1528. doi:10.2174/1381612821666150115152323 es_ES
dc.description.references Li, G., Che, M.-T., Zhang, K., Qin, L.-N., Zhang, Y.-T., Chen, R.-Q., … Zeng, Y.-S. (2016). Graft of the NT-3 persistent delivery gelatin sponge scaffold promotes axon regeneration, attenuates inflammation, and induces cell migration in rat and canine with spinal cord injury. Biomaterials, 83, 233-248. doi:10.1016/j.biomaterials.2015.11.059 es_ES
dc.description.references Li, X., & Dai, J. (2018). Bridging the gap with functional collagen scaffolds: tuning endogenous neural stem cells for severe spinal cord injury repair. Biomaterials Science, 6(2), 265-271. doi:10.1039/c7bm00974g es_ES
dc.description.references Liang, Y., Walczak, P., & Bulte, J. W. M. (2013). The survival of engrafted neural stem cells within hyaluronic acid hydrogels. Biomaterials, 34(22), 5521-5529. doi:10.1016/j.biomaterials.2013.03.095 es_ES
dc.description.references Lim, S. H., Liu, X. Y., Song, H., Yarema, K. J., & Mao, H.-Q. (2010). The effect of nanofiber-guided cell alignment on the preferential differentiation of neural stem cells. Biomaterials, 31(34), 9031-9039. doi:10.1016/j.biomaterials.2010.08.021 es_ES
dc.description.references Liu, C., Huang, Y., Pang, M., Yang, Y., Li, S., Liu, L., … Liu, B. (2015). Tissue-Engineered Regeneration of Completely Transected Spinal Cord Using Induced Neural Stem Cells and Gelatin-Electrospun Poly (Lactide-Co-Glycolide)/Polyethylene Glycol Scaffolds. PLOS ONE, 10(3), e0117709. doi:10.1371/journal.pone.0117709 es_ES
dc.description.references Lu, P., Wang, Y., Graham, L., McHale, K., Gao, M., Wu, D., … Tuszynski, M. H. (2012). Long-Distance Growth and Connectivity of Neural Stem Cells after Severe Spinal Cord Injury. Cell, 150(6), 1264-1273. doi:10.1016/j.cell.2012.08.020 es_ES
dc.description.references Morita, S., & Miyata, S. (2012). Synaptic localization of growth-associated protein 43 in cultured hippocampal neurons during synaptogenesis. Cell Biochemistry and Function, 31(5), 400-411. doi:10.1002/cbf.2914 es_ES
dc.description.references Ortuño-Lizarán, I., Vilariño-Feltrer, G., Martínez-Ramos, C., Pradas, M. M., & Vallés-Lluch, A. (2016). Influence of synthesis parameters on hyaluronic acid hydrogels intended as nerve conduits. Biofabrication, 8(4), 045011. doi:10.1088/1758-5090/8/4/045011 es_ES
dc.description.references Raspa, A., Marchini, A., Pugliese, R., Mauri, M., Maleki, M., Vasita, R., & Gelain, F. (2016). A biocompatibility study of new nanofibrous scaffolds for nervous system regeneration. Nanoscale, 8(1), 253-265. doi:10.1039/c5nr03698d es_ES
dc.description.references Requejo-Aguilar, R., Alastrue-Agudo, A., Cases-Villar, M., Lopez-Mocholi, E., England, R., Vicent, M. J., & Moreno-Manzano, V. (2017). Combined polymer-curcumin conjugate and ependymal progenitor/stem cell treatment enhances spinal cord injury functional recovery. Biomaterials, 113, 18-30. doi:10.1016/j.biomaterials.2016.10.032 es_ES
dc.description.references Rodriguez-Jimenez, F. J., Alastrue, A., Stojkovic, M., Erceg, S., & Moreno-Manzano, V. (2016). Connexin 50 modulates Sox2 expression in spinal-cord-derived ependymal stem/progenitor cells. Cell and Tissue Research, 365(2), 295-307. doi:10.1007/s00441-016-2421-y es_ES
dc.description.references Simitzi, C., Ranella, A., & Stratakis, E. (2017). Controlling the morphology and outgrowth of nerve and neuroglial cells: The effect of surface topography. Acta Biomaterialia, 51, 21-52. doi:10.1016/j.actbio.2017.01.023 es_ES
dc.description.references Steward, O., Sharp, K. G., Yee, K. M., Hatch, M. N., & Bonner, J. F. (2014). Characterization of Ectopic Colonies That Form in Widespread Areas of the Nervous System with Neural Stem Cell Transplants into the Site of a Severe Spinal Cord Injury. Journal of Neuroscience, 34(42), 14013-14021. doi:10.1523/jneurosci.3066-14.2014 es_ES
dc.description.references Stokols, S., & Tuszynski, M. H. (2006). Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury. Biomaterials, 27(3), 443-451. doi:10.1016/j.biomaterials.2005.06.039 es_ES
dc.description.references Straley, K. S., Foo, C. W. P., & Heilshorn, S. C. (2010). Biomaterial Design Strategies for the Treatment of Spinal Cord Injuries. Journal of Neurotrauma, 27(1), 1-19. doi:10.1089/neu.2009.0948 es_ES
dc.description.references Theodore, N., Hlubek, R., Danielson, J., Neff, K., Vaickus, L., Ulich, T. R., & Ropper, A. E. (2016). First Human Implantation of a Bioresorbable Polymer Scaffold for Acute Traumatic Spinal Cord Injury. Neurosurgery, 79(2), E305-E312. doi:10.1227/neu.0000000000001283 es_ES
dc.description.references Tian, L., Prabhakaran, M. P., & Ramakrishna, S. (2015). Strategies for regeneration of components of nervous system: scaffolds, cells and biomolecules. Regenerative Biomaterials, 2(1), 31-45. doi:10.1093/rb/rbu017 es_ES
dc.description.references Vilariño-Feltrer, G., Martínez-Ramos, C., Monleón-de-la-Fuente, A., Vallés-Lluch, A., Moratal, D., Barcia Albacar, J. A., & Monleón Pradas, M. (2016). Schwann-cell cylinders grown inside hyaluronic-acid tubular scaffolds with gradient porosity. Acta Biomaterialia, 30, 199-211. doi:10.1016/j.actbio.2015.10.040 es_ES
dc.description.references Vismara, I., Papa, S., Rossi, F., Forloni, G., & Veglianese, P. (2017). Current Options for Cell Therapy in Spinal Cord Injury. Trends in Molecular Medicine, 23(9), 831-849. doi:10.1016/j.molmed.2017.07.005 es_ES
dc.description.references Wen, Y., Yu, S., Wu, Y., Ju, R., Wang, H., Liu, Y., … Xu, Q. (2015). Spinal cord injury repair by implantation of structured hyaluronic acid scaffold with PLGA microspheres in the rat. Cell and Tissue Research, 364(1), 17-28. doi:10.1007/s00441-015-2298-1 es_ES
dc.description.references Wilson, J. R., & Fehlings, M. G. (2011). Emerging Approaches to the Surgical Management of Acute Traumatic Spinal Cord Injury. Neurotherapeutics, 8(2), 187-194. doi:10.1007/s13311-011-0027-3 es_ES
dc.description.references Xie, J., Liu, W., MacEwan, M. R., Bridgman, P. C., & Xia, Y. (2014). Neurite Outgrowth on Electrospun Nanofibers with Uniaxial Alignment: The Effects of Fiber Density, Surface Coating, and Supporting Substrate. ACS Nano, 8(2), 1878-1885. doi:10.1021/nn406363j es_ES


This item appears in the following Collection(s)

Show simple item record