- -

Multiplier and averaging operators in the Banach spaces ces(p), 1<p< infty

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Multiplier and averaging operators in the Banach spaces ces(p), 1<p< infty

Show full item record

Albanese, AA.; Bonet Solves, JA.; Ricker, WJ. (2019). Multiplier and averaging operators in the Banach spaces ces(p), 1<p< infty. Positivity. 23(1):177-193. https://doi.org/10.1007/s11117-018-0601-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160314

Files in this item

Item Metadata

Title: Multiplier and averaging operators in the Banach spaces ces(p), 1<p< infty
Author: Albanese, Angela A. Bonet Solves, José Antonio Ricker, Werner J.
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] The Banach sequence spaces ces(p) are generated in a specified way via the classical spaces p,1<p<. For each pair 1<p,q< the (p,q)-multiplier operators from ces(p) into ces(q) are known. We determine precisely which ...[+]
Subjects: Banach sequence spaces ces(p) , Multiplier , Compact operator , Cesaro operator , Mean ergodic operator
Copyrigths: Reserva de todos los derechos
Source:
Positivity. (issn: 1385-1292 )
DOI: 10.1007/s11117-018-0601-6
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s11117-018-0601-6
Project ID:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F102/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y APLICACIONES/
info:eu-repo/grantAgreement/MINECO//MTM2016-76647-P/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/
Thanks:
The research of the first two authors was partially supported by the Project MTM2016-76647-P (Spain). The second author thanks the Mathematics Department of the Katholische Universitat Eichstatt-Ingolstadt (Germany) for ...[+]
Type: Artículo

References

Albanese, A.A., Bonet, J., Ricker, W.J.: Convergence of arithmetic means of operators in Fréchet spaces. J. Math. Anal. Appl. 401, 160–173 (2013)

Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator in the Fréchet spaces $$\ell ^{p+}$$ ℓ p + and $$ L^{p-}$$ L p - . Glasg. Math. J. 59, 273–287 (2017)

Bennett, G.: Factorizing the classical inequalities. Mem. Am. Math. Soc. 120(576), viii + 130 pp (1996) [+]
Albanese, A.A., Bonet, J., Ricker, W.J.: Convergence of arithmetic means of operators in Fréchet spaces. J. Math. Anal. Appl. 401, 160–173 (2013)

Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator in the Fréchet spaces $$\ell ^{p+}$$ ℓ p + and $$ L^{p-}$$ L p - . Glasg. Math. J. 59, 273–287 (2017)

Bennett, G.: Factorizing the classical inequalities. Mem. Am. Math. Soc. 120(576), viii + 130 pp (1996)

Bourdon, P.S., Feldmann, N.S., Shapiro, J.H.: Some properties of $$N$$ N -supercyclic operators. Stud. Math. 165, 135–157 (2004)

Curbera, G.P., Ricker, W.J.: A feature of averaging. Integral Equ. Oper. Theory 76, 447–449 (2013)

Curbera, G.P., Ricker, W.J.: Solid extensions of the Cesàro operator on $$\ell ^p$$ ℓ p and $$c_0$$ c 0 . Integral Equ. Oper. Theory 80, 61–77 (2014)

Curbera, G.P., Ricker, W.J.: The Cesàro operator and unconditional Taylor series in Hardy spaces. Integral Equ. Oper. Theory 83, 179–195 (2015)

Delgado, O.: $$L^1$$ L 1 -spaces of vector measures defined on $$\delta $$ δ -rings. Arch. Math. 84, 432–443 (2005)

Delgado, O.: Optimal domains for kernel operators on $$[0,\infty ) \times [0,\infty ),$$ [ 0 , ∞ ) × [ 0 , ∞ ) , . Stud. Math. 174, 131–145 (2006)

Dunford, N., Schwartz, J.T.: Linear Operators I: General Theory, 2nd Printing. Wiley, New York (1964)

Grosse-Erdmann, K.-G.: The Blocking Technique, Weighted Mean Operators and Hardy’s Inequality. Lecture Notes in Mathematics, vol. 1679. Springer, Berlin (1998)

Hardy, G.H.: Note on a theorem of Hilbert. Math. Z. 6, 314–317 (1920)

Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1934)

Knopp, K.: Infinite Sequences and Series, Translated edn. Dover Publications, New York (1956)

Krengel, U.: Ergodic Theorems. de Gruyter, Berlin (1985)

Leibowitz, G.: Spectra of discrete Cesàro operators. Tamkang J. Math. 3, 123–132 (1972)

Lin, M.: On the uniform ergodic theorem. Proc. Am. Math. Soc. 43, 337–340 (1974)

Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces I. Springer, Berlin (1996)

Lorch, E.R.: Means of iterated transformations in reflexive vector spaces. Bull. Am. Math. Soc. 45, 945–947 (1939)

Reade, J.B.: On the spectrum of the Cesàro operator. Bull. Lond. Math. Soc. 17, 263–267 (1985)

Saejung, S.: Another look at Cesàro sequence spaces. J. Math. Anal. Appl. 366, 530–537 (2010)

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record