- -

Experimental determination and modelling of the diesel oxidation catalysts ageing effects

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Experimental determination and modelling of the diesel oxidation catalysts ageing effects

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Guardiola, Carlos es_ES
dc.contributor.author Pla Moreno, Benjamín es_ES
dc.contributor.author Mora Pérez, Javier es_ES
dc.contributor.author Lefebvre, Damien es_ES
dc.date.accessioned 2021-01-30T04:31:52Z
dc.date.available 2021-01-30T04:31:52Z
dc.date.issued 2019-10 es_ES
dc.identifier.issn 0954-4070 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160315
dc.description.abstract [EN] After-treatment systems are necessary to respect the pollutant emissions thresholds specified by regulations. However, due to system ageing, the efficiency of the after-treatment system may decrease and affect the vehicle emissions during real driving conditions. To address this issue, the model presented in this article is based on the on-engine tests performed to a set of diesel oxidation catalysts with different ageing levels, through which the ageing process is characterized. Then, the model is able to simulate the light-off temperature and slip increase due to ageing, and it is applied to a Worldwide Harmonized Light Vehicles Test Cycle for a new and a thermally aged catalysts. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research has been partially financed by the Spanish Ministerio de Economía y Competitividad, through project TRA2016-78717-R. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Diesel oxidation catalyst es_ES
dc.subject Diesel engine es_ES
dc.subject Ageing es_ES
dc.subject Model es_ES
dc.subject Emissions es_ES
dc.subject Diagnostics es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Experimental determination and modelling of the diesel oxidation catalysts ageing effects es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/0954407018814305 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TRA2016-78717-R/ES/ESTRATEGIAS DE CONTROL BASADAS EN LA INFORMACION CONTEXTUAL DEL VEHICULO PARA LA REDUCCION DEL CONSUMO DE COMBUSTIBLE Y LAS EMISIONES EN CONDICIONES REALES DE CONDUCCION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Guardiola, C.; Pla Moreno, B.; Mora Pérez, J.; Lefebvre, D. (2019). Experimental determination and modelling of the diesel oxidation catalysts ageing effects. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering. 233(12):3016-3029. https://doi.org/10.1177/0954407018814305 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/0954407018814305 es_ES
dc.description.upvformatpinicio 3016 es_ES
dc.description.upvformatpfin 3029 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 233 es_ES
dc.description.issue 12 es_ES
dc.relation.pasarela S\400467 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references ALKEMADE, U., & SCHUMANN, B. (2006). Engines and exhaust after treatment systems for future automotive applications. Solid State Ionics, 177(26-32), 2291-2296. doi:10.1016/j.ssi.2006.05.051 es_ES
dc.description.references Johnson, T. (2016). Vehicular Emissions in Review. SAE International Journal of Engines, 9(2), 1258-1275. doi:10.4271/2016-01-0919 es_ES
dc.description.references Mohammadpour, J., Franchek, M., & Grigoriadis, K. (2011). A survey on diagnostic methods for automotive engines. International Journal of Engine Research, 13(1), 41-64. doi:10.1177/1468087411422851 es_ES
dc.description.references Ye, S., Yap, Y. H., Kolaczkowski, S. T., Robinson, K., & Lukyanov, D. (2012). Catalyst ‘light-off’ experiments on a diesel oxidation catalyst connected to a diesel engine—Methodology and techniques. Chemical Engineering Research and Design, 90(6), 834-845. doi:10.1016/j.cherd.2011.10.003 es_ES
dc.description.references Tourlonias, P., & Koltsakis, G. (2011). Model-based comparative study of Euro 6 diesel aftertreatment concepts, focusing on fuel consumption. International Journal of Engine Research, 12(3), 238-251. doi:10.1177/1468087411405104 es_ES
dc.description.references Sampara, C. S., Bissett, E. J., Chmielewski, M., & Assanis, D. (2007). Global Kinetics for Platinum Diesel Oxidation Catalysts. Industrial & Engineering Chemistry Research, 46(24), 7993-8003. doi:10.1021/ie070642w es_ES
dc.description.references Kryl, D., Kočí, P., Kubíček, M., Marek, M., Maunula, T., & Härkönen, M. (2005). Catalytic Converters for Automobile Diesel Engines with Adsorption of Hydrocarbons on Zeolites. Industrial & Engineering Chemistry Research, 44(25), 9524-9534. doi:10.1021/ie050249v es_ES
dc.description.references Sampara, C. S., Bissett, E. J., & Chmielewski, M. (2007). Global Kinetics for a Commercial Diesel Oxidation Catalyst with Two Exhaust Hydrocarbons. Industrial & Engineering Chemistry Research, 47(2), 311-322. doi:10.1021/ie070813x es_ES
dc.description.references Tanaka, Y., Hihara, T., Nagata, M., Azuma, N., & Ueno, A. (2005). Modeling of Diesel Oxidation Catalyst. Industrial & Engineering Chemistry Research, 44(22), 8205-8212. doi:10.1021/ie0580349 es_ES
dc.description.references Li, J., Szailer, T., Watts, A., Currier, N., & Yezerets, A. (2012). Investigation of the Impact of Real-World Aging on Diesel Oxidation Catalysts. SAE International Journal of Engines, 5(3), 985-994. doi:10.4271/2012-01-1094 es_ES
dc.description.references Guardiola, C., Pla, B., Mora, J., & Lefebvre, D. (2015). Control Oriented Model for Diesel Oxidation Catalyst Diagnosis. IFAC-PapersOnLine, 48(15), 427-433. doi:10.1016/j.ifacol.2015.10.061 es_ES
dc.description.references Chen, P., & Wang, J. (2014). Control-oriented model for integrated diesel engine and aftertreatment systems thermal management. Control Engineering Practice, 22, 81-93. doi:10.1016/j.conengprac.2013.09.009 es_ES
dc.description.references Kim, Y.-D., & Kim, W.-S. (2009). Re-evaluation and Modeling of a Commercial Diesel Oxidation Catalyst. Industrial & Engineering Chemistry Research, 48(14), 6579-6590. doi:10.1021/ie801509j es_ES
dc.description.references Guardiola, C., Dolz, V., Pla, B., & Mora, J. (2016). Fast estimation of diesel oxidation catalysts inlet gas temperature. Control Engineering Practice, 56, 148-156. doi:10.1016/j.conengprac.2016.08.020 es_ES
dc.description.references Sampara, C. S., Bissett, E. J., & Assanis, D. (2008). Hydrocarbon storage modeling for diesel oxidation catalysts. Chemical Engineering Science, 63(21), 5179-5192. doi:10.1016/j.ces.2008.06.021 es_ES
dc.description.references Arvajová, A., Kočí, P., Schmeißer, V., & Weibel, M. (2016). The impact of CO and C3H6 pulses on PtO reduction and NO oxidation in a diesel oxidation catalyst. Applied Catalysis B: Environmental, 181, 644-650. doi:10.1016/j.apcatb.2015.08.004 es_ES
dc.description.references Mallamo, F., Longhi, S., Millo, F., & Rolando, L. (2013). Modeling of diesel oxidation catalysts for calibration and control purpose. International Journal of Engine Research, 15(8), 965-979. doi:10.1177/1468087413492526 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem