7 Million Premature Deaths Annually Linked to Air Pollution https://www.who.int/mediacentre/news/releases/2014/air-pollution/en/
Hansen, J., Sato, M., Ruedy, R., Lacis, A., & Oinas, V. (2000). Global warming in the twenty-first century: An alternative scenario. Proceedings of the National Academy of Sciences, 97(18), 9875-9880. doi:10.1073/pnas.170278997
Ibañez, F. J., & Zamborini, F. P. (2011). Chemiresistive Sensing with Chemically Modified Metal and Alloy Nanoparticles. Small, 8(2), 174-202. doi:10.1002/smll.201002232
[+]
7 Million Premature Deaths Annually Linked to Air Pollution https://www.who.int/mediacentre/news/releases/2014/air-pollution/en/
Hansen, J., Sato, M., Ruedy, R., Lacis, A., & Oinas, V. (2000). Global warming in the twenty-first century: An alternative scenario. Proceedings of the National Academy of Sciences, 97(18), 9875-9880. doi:10.1073/pnas.170278997
Ibañez, F. J., & Zamborini, F. P. (2011). Chemiresistive Sensing with Chemically Modified Metal and Alloy Nanoparticles. Small, 8(2), 174-202. doi:10.1002/smll.201002232
Mirzaei, A., Leonardi, S. G., & Neri, G. (2016). Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review. Ceramics International, 42(14), 15119-15141. doi:10.1016/j.ceramint.2016.06.145
Zaidi, N. A., Tahir, M. W., Vellekoop, M. J., & Lang, W. (2017). A Gas Chromatographic System for the Detection of Ethylene Gas Using Ambient Air as a Carrier Gas. Sensors, 17(10), 2283. doi:10.3390/s17102283
Meng, F.-L., Guo, Z., & Huang, X.-J. (2015). Graphene-based hybrids for chemiresistive gas sensors. TrAC Trends in Analytical Chemistry, 68, 37-47. doi:10.1016/j.trac.2015.02.008
Miller, D. R., Akbar, S. A., & Morris, P. A. (2014). Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sensors and Actuators B: Chemical, 204, 250-272. doi:10.1016/j.snb.2014.07.074
Scott, S. M., James, D., & Ali, Z. (2006). Data analysis for electronic nose systems. Microchimica Acta, 156(3-4), 183-207. doi:10.1007/s00604-006-0623-9
Rodríguez-Pérez, L., Herranz, M. Á., & Martín, N. (2013). The chemistry of pristine graphene. Chemical Communications, 49(36), 3721. doi:10.1039/c3cc38950b
Prezioso, S., Perrozzi, F., Giancaterini, L., Cantalini, C., Treossi, E., Palermo, V., … Ottaviano, L. (2013). Graphene Oxide as a Practical Solution to High Sensitivity Gas Sensing. The Journal of Physical Chemistry C, 117(20), 10683-10690. doi:10.1021/jp3085759
Lipatov, A., Varezhnikov, A., Wilson, P., Sysoev, V., Kolmakov, A., & Sinitskii, A. (2013). Highly selective gas sensor arrays based on thermally reduced graphene oxide. Nanoscale, 5(12), 5426. doi:10.1039/c3nr00747b
Varghese, S. S., Lonkar, S., Singh, K. K., Swaminathan, S., & Abdala, A. (2015). Recent advances in graphene based gas sensors. Sensors and Actuators B: Chemical, 218, 160-183. doi:10.1016/j.snb.2015.04.062
Rodner, M., Puglisi, D., Ekeroth, S., Helmersson, U., Shtepliuk, I., Yakimova, R., … Eriksson, J. (2019). Graphene Decorated with Iron Oxide Nanoparticles for Highly Sensitive Interaction with Volatile Organic Compounds. Sensors, 19(4), 918. doi:10.3390/s19040918
Kaniyoor, A., Imran Jafri, R., Arockiadoss, T., & Ramaprabhu, S. (2009). Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor. Nanoscale, 1(3), 382. doi:10.1039/b9nr00015a
Seekaew, Y., Lokavee, S., Phokharatkul, D., Wisitsoraat, A., Kerdcharoen, T., & Wongchoosuk, C. (2014). Low-cost and flexible printed graphene–PEDOT:PSS gas sensor for ammonia detection. Organic Electronics, 15(11), 2971-2981. doi:10.1016/j.orgel.2014.08.044
Kang, M.-A., Ji, S., Kim, S., Park, C.-Y., Myung, S., Song, W., … An, K.-S. (2018). Highly sensitive and wearable gas sensors consisting of chemically functionalized graphene oxide assembled on cotton yarn. RSC Advances, 8(22), 11991-11996. doi:10.1039/c8ra01184b
Fine, G. F., Cavanagh, L. M., Afonja, A., & Binions, R. (2010). Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring. Sensors, 10(6), 5469-5502. doi:10.3390/s100605469
Sun, D., Luo, Y., Debliquy, M., & Zhang, C. (2018). Graphene-enhanced metal oxide gas sensors at room temperature: a review. Beilstein Journal of Nanotechnology, 9, 2832-2844. doi:10.3762/bjnano.9.264
Llobet, E. (2013). Gas sensors using carbon nanomaterials: A review. Sensors and Actuators B: Chemical, 179, 32-45. doi:10.1016/j.snb.2012.11.014
Correa-Baena, J.-P., Abate, A., Saliba, M., Tress, W., Jesper Jacobsson, T., Grätzel, M., & Hagfeldt, A. (2017). The rapid evolution of highly efficient perovskite solar cells. Energy & Environmental Science, 10(3), 710-727. doi:10.1039/c6ee03397k
Sun, S., Salim, T., Mathews, N., Duchamp, M., Boothroyd, C., Xing, G., … Lam, Y. M. (2014). The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci., 7(1), 399-407. doi:10.1039/c3ee43161d
Juarez-Perez, E. J., Ono, L. K., Maeda, M., Jiang, Y., Hawash, Z., & Qi, Y. (2018). Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability. Journal of Materials Chemistry A, 6(20), 9604-9612. doi:10.1039/c8ta03501f
Chen, H., Zhang, M., Bo, R., Barugkin, C., Zheng, J., Ma, Q., … Tricoli, A. (2017). Superior Self‐Powered Room‐Temperature Chemical Sensing with Light‐Activated Inorganic Halides Perovskites. Small, 14(7), 1702571. doi:10.1002/smll.201702571
Kakavelakis, G., Gagaoudakis, E., Petridis, K., Petromichelaki, V., Binas, V., Kiriakidis, G., & Kymakis, E. (2017). Solution Processed CH3NH3PbI3–xClx Perovskite Based Self-Powered Ozone Sensing Element Operated at Room Temperature. ACS Sensors, 3(1), 135-142. doi:10.1021/acssensors.7b00761
Bao, C., Yang, J., Zhu, W., Zhou, X., Gao, H., Li, F., … Zou, Z. (2015). A resistance change effect in perovskite CH3NH3PbI3 films induced by ammonia. Chemical Communications, 51(84), 15426-15429. doi:10.1039/c5cc06060e
Zhuang, Y., Yuan, W., Qian, L., Chen, S., & Shi, G. (2017). High-performance gas sensors based on a thiocyanate ion-doped organometal halide perovskite. Physical Chemistry Chemical Physics, 19(20), 12876-12881. doi:10.1039/c7cp01646h
Stoeckel, M.-A., Gobbi, M., Bonacchi, S., Liscio, F., Ferlauto, L., Orgiu, E., & Samorì, P. (2017). Reversible, Fast, and Wide-Range Oxygen Sensor Based on Nanostructured Organometal Halide Perovskite. Advanced Materials, 29(38), 1702469. doi:10.1002/adma.201702469
Zhu, R., Zhang, Y., Zhong, H., Wang, X., Xiao, H., Chen, Y., & Li, X. (2019). High-performance room-temperature NO2 sensors based on CH3NH3PbBr3 semiconducting films: Effect of surface capping by alkyl chain on sensor performance. Journal of Physics and Chemistry of Solids, 129, 270-276. doi:10.1016/j.jpcs.2019.01.020
Acik, M., & Darling, S. B. (2016). Graphene in perovskite solar cells: device design, characterization and implementation. Journal of Materials Chemistry A, 4(17), 6185-6235. doi:10.1039/c5ta09911k
Christians, J. A., Miranda Herrera, P. A., & Kamat, P. V. (2015). Transformation of the Excited State and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite upon Controlled Exposure to Humidified Air. Journal of the American Chemical Society, 137(4), 1530-1538. doi:10.1021/ja511132a
Leguy, A. M. A., Hu, Y., Campoy-Quiles, M., Alonso, M. I., Weber, O. J., Azarhoosh, P., … Barnes, P. R. F. (2015). Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells. Chemistry of Materials, 27(9), 3397-3407. doi:10.1021/acs.chemmater.5b00660
O’Keeffe, P., Catone, D., Paladini, A., Toschi, F., Turchini, S., Avaldi, L., … Di Carlo, A. (2019). Graphene-Induced Improvements of Perovskite Solar Cell Stability: Effects on Hot-Carriers. Nano Letters, 19(2), 684-691. doi:10.1021/acs.nanolett.8b03685
Berhe, T. A., Su, W.-N., Chen, C.-H., Pan, C.-J., Cheng, J.-H., Chen, H.-M., … Hwang, B.-J. (2016). Organometal halide perovskite solar cells: degradation and stability. Energy & Environmental Science, 9(2), 323-356. doi:10.1039/c5ee02733k
Lee, G. Y., Yang, M. Y., Kim, D., Lim, J., Byun, J., Choi, D. S., … Kim, S. O. (2019). Nitrogen‐Dopant‐Induced Organic–Inorganic Hybrid Perovskite Crystal Growth on Carbon Nanotubes. Advanced Functional Materials, 29(30), 1902489. doi:10.1002/adfm.201902489
Fu, X., Jiao, S., Dong, N., Lian, G., Zhao, T., Lv, S., … Cui, D. (2018). A CH3NH3PbI3 film for a room-temperature NO2 gas sensor with quick response and high selectivity. RSC Advances, 8(1), 390-395. doi:10.1039/c7ra11149e
Gupta, N., Nanda, O., Grover, R., & Saxena, K. (2018). A new inorganic-organic hybrid halide perovskite thin film based ammonia sensor. Organic Electronics, 58, 202-206. doi:10.1016/j.orgel.2018.04.015
Air Quality Standards https://ec.europa.eu/environment/air/quality/standards.htm
Commission Directive 2000/39/EC https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:02000L0039-20100108&from=EN
Schmidt, L. C., Pertegás, A., González-Carrero, S., Malinkiewicz, O., Agouram, S., Mínguez Espallargas, G., … Pérez-Prieto, J. (2014). Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles. Journal of the American Chemical Society, 136(3), 850-853. doi:10.1021/ja4109209
Yang, G., Kim, B.-J., Kim, K., Han, J. W., & Kim, J. (2015). Energy and dose dependence of proton-irradiation damage in graphene. RSC Advances, 5(40), 31861-31865. doi:10.1039/c5ra03551a
D’Acunto, G., Ripanti, F., Postorino, P., Betti, M. G., Scardamaglia, M., Bittencourt, C., & Mariani, C. (2018). Channelling and induced defects at ion-bombarded aligned multiwall carbon nanotubes. Carbon, 139, 768-775. doi:10.1016/j.carbon.2018.07.032
Johra, F. T., Lee, J.-W., & Jung, W.-G. (2014). Facile and safe graphene preparation on solution based platform. Journal of Industrial and Engineering Chemistry, 20(5), 2883-2887. doi:10.1016/j.jiec.2013.11.022
Ganesan, K., Ghosh, S., Gopala Krishna, N., Ilango, S., Kamruddin, M., & Tyagi, A. K. (2016). A comparative study on defect estimation using XPS and Raman spectroscopy in few layer nanographitic structures. Physical Chemistry Chemical Physics, 18(32), 22160-22167. doi:10.1039/c6cp02033j
Roy, S., Das, T., Ming, Y., Chen, X., Yue, C. Y., & Hu, X. (2014). Specific functionalization and polymer grafting on multiwalled carbon nanotubes to fabricate advanced nylon 12 composites. Journal of Materials Chemistry A, 2(11), 3961. doi:10.1039/c3ta14528j
Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., … Galiotis, C. (2008). Chemical oxidation of multiwalled carbon nanotubes. Carbon, 46(6), 833-840. doi:10.1016/j.carbon.2008.02.012
Kumar, P. V., Bernardi, M., & Grossman, J. C. (2013). The Impact of Functionalization on the Stability, Work Function, and Photoluminescence of Reduced Graphene Oxide. ACS Nano, 7(2), 1638-1645. doi:10.1021/nn305507p
Liu, J., Durstock, M., & Dai, L. (2014). Graphene oxide derivatives as hole- and electron-extraction layers for high-performance polymer solar cells. Energy Environ. Sci., 7(4), 1297-1306. doi:10.1039/c3ee42963f
Georgakilas, V., Otyepka, M., Bourlinos, A. B., Chandra, V., Kim, N., Kemp, K. C., … Kim, K. S. (2012). Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chemical Reviews, 112(11), 6156-6214. doi:10.1021/cr3000412
Wang, Y., Zhang, Y., Lu, Y., Xu, W., Mu, H., Chen, C., … Bao, Q. (2015). Hybrid Graphene-Perovskite Phototransistors with Ultrahigh Responsivity and Gain. Advanced Optical Materials, 3(10), 1389-1396. doi:10.1002/adom.201500150
Lv, C., Hu, C., Luo, J., Liu, S., Qiao, Y., Zhang, Z., … Watanabe, A. (2019). Recent Advances in Graphene-Based Humidity Sensors. Nanomaterials, 9(3), 422. doi:10.3390/nano9030422
Casanova-Cháfer, J., Navarrete, E., Noirfalise, X., Umek, P., Bittencourt, C., & Llobet, E. (2018). Gas Sensing with Iridium Oxide Nanoparticle Decorated Carbon Nanotubes. Sensors, 19(1), 113. doi:10.3390/s19010113
Fang, H.-H., Adjokatse, S., Wei, H., Yang, J., Blake, G. R., Huang, J., … Loi, M. A. (2016). Ultrahigh sensitivity of methylammonium lead tribromide perovskite single crystals to environmental gases. Science Advances, 2(7). doi:10.1126/sciadv.1600534
[-]