- -

Qualitative and Quantitative Dierences in Osmolytes Accumulation and Antioxidant Activities in Response to Water Deficit in Four Mediterranean Limonium Species

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Qualitative and Quantitative Dierences in Osmolytes Accumulation and Antioxidant Activities in Response to Water Deficit in Four Mediterranean Limonium Species

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González-Orenga, Sara es_ES
dc.contributor.author Al Hassan, Mohamad es_ES
dc.contributor.author Llinares Palacios, Josep Vicent es_ES
dc.contributor.author Lisón, Purificación es_ES
dc.contributor.author López-Gresa, María Pilar es_ES
dc.contributor.author Verdeguer Sancho, Mercedes María es_ES
dc.contributor.author Vicente, Oscar es_ES
dc.contributor.author Boscaiu, Monica es_ES
dc.date.accessioned 2021-02-02T04:32:22Z
dc.date.available 2021-02-02T04:32:22Z
dc.date.issued 2019-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160419
dc.description.abstract [EN] Limonium is a genus represented in the Iberian Peninsula by numerous halophytic species that are a ected in nature by salinity, and often by prolonged drought episodes. Responses to water deficit have been studied in four Mediterranean Limonium species, previously investigated regarding salt tolerance mechanisms. The levels of biochemical markers, associated with specific responses¿photosynthetic pigments, mono- and divalent ions, osmolytes, antioxidant compounds and enzymes¿were determined in the control and water-stressed plants, and correlated with their relative degree of stress-induced growth inhibition. All the tested Limonium taxa are relatively resistant to drought on the basis of both the constitutive presence of high leaf ion levels that contribute to osmotic adjustment, and the stress-induced accumulation of osmolytes and increased activity of antioxidant enzymes, albeit with di erent qualitative and quantitative induction patterns. Limonium santapolense activated the strongest responses and clearly di ered from Limonium virgatum, Limonium girardianum, and Limonium narbonense, as indicated by cluster and principal component analysis (PCA) analyses in agreement with its drier natural habitat, and compared to that of the other plants. Somewhat surprisingly, however, L. santapolense was the species most a ected by water deficit in growth inhibition terms, which suggests the existence of additional mechanisms of defense operating in the field that cannot be mimicked in greenhouses. es_ES
dc.description.sponsorship This research was partially funded by Project AICO/2017/039 from the Generalitat Valenciana, granted to M. Boscaiu. es_ES
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Plants es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Limonium santapolense es_ES
dc.subject Limonium virgatum es_ES
dc.subject Limonium girardianum es_ES
dc.subject Limonium narbonense es_ES
dc.subject Drought es_ES
dc.subject Water deficit es_ES
dc.subject Oxidative stress es_ES
dc.subject Ions es_ES
dc.subject Osmolytes es_ES
dc.subject Antioxidant enzymes es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.subject.classification EDAFOLOGIA Y QUIMICA AGRICOLA es_ES
dc.subject.classification BOTANICA es_ES
dc.title Qualitative and Quantitative Dierences in Osmolytes Accumulation and Antioxidant Activities in Response to Water Deficit in Four Mediterranean Limonium Species es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/plants8110506 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2017%2F039/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation González-Orenga, S.; Al Hassan, M.; Llinares Palacios, JV.; Lisón, P.; López-Gresa, MP.; Verdeguer Sancho, MM.; Vicente, O.... (2019). Qualitative and Quantitative Dierences in Osmolytes Accumulation and Antioxidant Activities in Response to Water Deficit in Four Mediterranean Limonium Species. Plants. 8(11):1-21. https://doi.org/10.3390/plants8110506 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/plants8110506 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 2223-7747 es_ES
dc.identifier.pmid 31731597 es_ES
dc.identifier.pmcid PMC6918351 es_ES
dc.relation.pasarela S\397325 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Hoerling, M., Eischeid, J., Perlwitz, J., Quan, X., Zhang, T., & Pegion, P. (2012). On the Increased Frequency of Mediterranean Drought. Journal of Climate, 25(6), 2146-2161. doi:10.1175/jcli-d-11-00296.1 es_ES
dc.description.references Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239-250. doi:10.1046/j.0016-8025.2001.00808.x es_ES
dc.description.references Van Breusegem, F., & Dat, J. F. (2006). Reactive Oxygen Species in Plant Cell Death. Plant Physiology, 141(2), 384-390. doi:10.1104/pp.106.078295 es_ES
dc.description.references Li, Z., Wakao, S., Fischer, B. B., & Niyogi, K. K. (2009). Sensing and Responding to Excess Light. Annual Review of Plant Biology, 60(1), 239-260. doi:10.1146/annurev.arplant.58.032806.103844 es_ES
dc.description.references Shabala, S., Bose, J., Fuglsang, A. T., & Pottosin, I. (2015). On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils. Journal of Experimental Botany, 67(4), 1015-1031. doi:10.1093/jxb/erv465 es_ES
dc.description.references Schachtman, D. P., & Goodger, J. Q. D. (2008). Chemical root to shoot signaling under drought. Trends in Plant Science, 13(6), 281-287. doi:10.1016/j.tplants.2008.04.003 es_ES
dc.description.references Fang, Y., & Xiong, L. (2014). General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 72(4), 673-689. doi:10.1007/s00018-014-1767-0 es_ES
dc.description.references Martìnez, J. P., Ledent, J. F., Bajji, M., Kinet, J. M., & Lutts, S. (2003). Plant Growth Regulation, 41(1), 63-73. doi:10.1023/a:1027359613325 es_ES
dc.description.references Xi, J.-J., Chen, H.-Y., Bai, W.-P., Yang, R.-C., Yang, P.-Z., Chen, R.-J., … Wang, S.-M. (2018). Sodium-Related Adaptations to Drought: New Insights From the Xerophyte Plant Zygophyllum xanthoxylum. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01678 es_ES
dc.description.references MILLER, G., SUZUKI, N., CIFTCI-YILMAZ, S., & MITTLER, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment, 33(4), 453-467. doi:10.1111/j.1365-3040.2009.02041.x es_ES
dc.description.references Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. Journal of Botany, 2012, 1-26. doi:10.1155/2012/217037 es_ES
dc.description.references Kar, R. K. (2011). Plant responses to water stress: Role of reactive oxygen species. Plant Signaling & Behavior, 6(11), 1741-1745. doi:10.4161/psb.6.11.17729 es_ES
dc.description.references Golldack, D., Li, C., Mohan, H., & Probst, N. (2014). Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00151 es_ES
dc.description.references Gagneul, D., Aïnouche, A., Duhazé, C., Lugan, R., Larher, F. R., & Bouchereau, A. (2007). A Reassessment of the Function of the So-Called Compatible Solutes in the Halophytic Plumbaginaceae Limonium latifolium  . Plant Physiology, 144(3), 1598-1611. doi:10.1104/pp.107.099820 es_ES
dc.description.references Al Hassan, M., Estrelles, E., Soriano, P., López-Gresa, M. P., Bellés, J. M., Boscaiu, M., & Vicente, O. (2017). Unraveling Salt Tolerance Mechanisms in Halophytes: A Comparative Study on Four Mediterranean Limonium Species with Different Geographic Distribution Patterns. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01438 es_ES
dc.description.references Galmés, J., Cifre, J., Medrano, H., & Flexas, J. (2005). Modulation of relative growth rate and its components by water stress in Mediterranean species with different growth forms. Oecologia, 145(1), 21-31. doi:10.1007/s00442-005-0106-4 es_ES
dc.description.references Galmés, J., Molins, A., Flexas, J., & Conesa, M. À. (2017). Coordination between leaf CO2diffusion and Rubisco properties allows maximizing photosynthetic efficiency inLimoniumspecies. Plant, Cell & Environment, 40(10), 2081-2094. doi:10.1111/pce.13004 es_ES
dc.description.references Guerin, G. R., Wen, H., & Lowe, A. J. (2012). Leaf morphology shift linked to climate change. Biology Letters, 8(5), 882-886. doi:10.1098/rsbl.2012.0458 es_ES
dc.description.references Kumar, D., Al Hassan, M., Naranjo, M. A., Agrawal, V., Boscaiu, M., & Vicente, O. (2017). Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.). PLOS ONE, 12(9), e0185017. doi:10.1371/journal.pone.0185017 es_ES
dc.description.references Marček, T., Hamow, K. Á., Végh, B., Janda, T., & Darko, E. (2019). Metabolic response to drought in six winter wheat genotypes. PLOS ONE, 14(2), e0212411. doi:10.1371/journal.pone.0212411 es_ES
dc.description.references Silva, E. N., Ferreira-Silva, S. L., Viégas, R. A., & Silveira, J. A. G. (2010). The role of organic and inorganic solutes in the osmotic adjustment of drought-stressed Jatropha curcas plants. Environmental and Experimental Botany, 69(3), 279-285. doi:10.1016/j.envexpbot.2010.05.001 es_ES
dc.description.references Gámez, A. L., Soba, D., Zamarreño, Á. M., García-Mina, J. M., Aranjuelo, I., & Morales, F. (2019). Effect of Water Stress during Grain Filling on Yield, Quality and Physiological Traits of Illpa and Rainbow Quinoa (Chenopodium quinoa Willd.) Cultivars. Plants, 8(6), 173. doi:10.3390/plants8060173 es_ES
dc.description.references Van der Weijde, T., Huxley, L. M., Hawkins, S., Sembiring, E. H., Farrar, K., Dolstra, O., … Trindade, L. M. (2016). Impact of drought stress on growth and quality of miscanthus for biofuel production. GCB Bioenergy, 9(4), 770-782. doi:10.1111/gcbb.12382 es_ES
dc.description.references Tabot, P. T., & Adams, J. B. (2014). Salt secretion, proline accumulation and increased branching confer tolerance to drought and salinity in the endemic halophyte Limonium linifolium. South African Journal of Botany, 94, 64-73. doi:10.1016/j.sajb.2014.05.009 es_ES
dc.description.references Hanson, A. D., Rathinasabapathi, B., Chamberlin, B., & Gage, D. A. (1991). Comparative Physiological Evidence that β-Alanine Betaine and Choline-O-Sulfate Act as Compatible Osmolytes in Halophytic Limonium Species. Plant Physiology, 97(3), 1199-1205. doi:10.1104/pp.97.3.1199 es_ES
dc.description.references Rhodes, D., & Hanson, A. D. (1993). Quaternary Ammonium and Tertiary Sulfonium Compounds in Higher Plants. Annual Review of Plant Physiology and Plant Molecular Biology, 44(1), 357-384. doi:10.1146/annurev.pp.44.060193.002041 es_ES
dc.description.references Murakeözy, É. P., Nagy, Z., Duhazé, C., Bouchereau, A., & Tuba, Z. (2003). Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary. Journal of Plant Physiology, 160(4), 395-401. doi:10.1078/0176-1617-00790 es_ES
dc.description.references GIL, R., LULL, C., BOSCAIU, M., BAUTISTA, I., LIDÓN, A., & VICENTE, O. (2011). Soluble Carbohydrates as Osmolytes in Several Halophytes from a Mediterranean Salt Marsh. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39(2), 09. doi:10.15835/nbha3927176 es_ES
dc.description.references Halliwell, B. (2006). Reactive Species and Antioxidants. Redox Biology Is a Fundamental Theme of Aerobic Life. Plant Physiology, 141(2), 312-322. doi:10.1104/pp.106.077073 es_ES
dc.description.references Sofo, A., Scopa, A., Nuzzaci, M., & Vitti, A. (2015). Ascorbate Peroxidase and Catalase Activities and Their Genetic Regulation in Plants Subjected to Drought and Salinity Stresses. International Journal of Molecular Sciences, 16(12), 13561-13578. doi:10.3390/ijms160613561 es_ES
dc.description.references Del Rio, L. A., Palma, J. M., Sandalio, L. M., Corpas, F. J., Pastori, G. M., Bueno, P., & López-Huertas, E. (1996). Peroxisomes as a source of superoxide and hydrogen peroxide in stressed plants. Biochemical Society Transactions, 24(2), 434-438. doi:10.1042/bst0240434 es_ES
dc.description.references Kedare, S. B., & Singh, R. P. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology, 48(4), 412-422. doi:10.1007/s13197-011-0251-1 es_ES
dc.description.references Gil, R., Bautista, I., Boscaiu, M., Lidon, A., Wankhade, S., Sanchez, H., … Vicente, O. (2014). Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB PLANTS, 6(0), plu049-plu049. doi:10.1093/aobpla/plu049 es_ES
dc.description.references Bose, J., Rodrigo-Moreno, A., & Shabala, S. (2013). ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany, 65(5), 1241-1257. doi:10.1093/jxb/ert430 es_ES
dc.description.references Fini, A., Brunetti, C., Di Ferdinando, M., Ferrini, F., & Tattini, M. (2011). Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signaling & Behavior, 6(5), 709-711. doi:10.4161/psb.6.5.15069 es_ES
dc.description.references Souid, A., Bellani, L., Magné, C., Zorrig, W., Smaoui, A., Abdelly, C., … Ben Hamed, K. (2018). Physiological and antioxidant responses of the sabkha biotope halophyte Limonium delicatulum to seasonal changes in environmental conditions. Plant Physiology and Biochemistry, 123, 180-191. doi:10.1016/j.plaphy.2017.12.008 es_ES
dc.description.references Alscher, R. G. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53(372), 1331-1341. doi:10.1093/jexbot/53.372.1331 es_ES
dc.description.references Caverzan, A., Casassola, A., & Brammer, S. P. (2016). Antioxidant responses of wheat plants under stress. Genetics and Molecular Biology, 39(1), 1-6. doi:10.1590/1678-4685-gmb-2015-0109 es_ES
dc.description.references Gunes, A., Pilbeam, D. J., Inal, A., Bagci, E. G., & Coban, S. (2007). Influence of silicon on antioxidant mechanisms and lipid peroxidation in chickpea (Cicer arietinumL.) cultivars under drought stress. Journal of Plant Interactions, 2(2), 105-113. doi:10.1080/17429140701529399 es_ES
dc.description.references Hameed, A., Gulzar, S., Aziz, I., Hussain, T., Gul, B., & Khan, M. A. (2015). Effects of salinity and ascorbic acid on growth, water status and antioxidant system in a perennial halophyte. AoB PLANTS, 7. doi:10.1093/aobpla/plv004 es_ES
dc.description.references LICHTENTHALER, H. K., & WELLBURN, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. doi:10.1042/bst0110591 es_ES
dc.description.references Weimberg, R. (1987). Solute adjustments in leaves of two species of wheat at two different stages of growth in response to salinity. Physiologia Plantarum, 70(3), 381-388. doi:10.1111/j.1399-3054.1987.tb02832.x es_ES
dc.description.references Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/bf00018060 es_ES
dc.description.references Grieve, C. M., & Grattan, S. R. (1983). Rapid assay for determination of water soluble quaternary ammonium compounds. Plant and Soil, 70(2), 303-307. doi:10.1007/bf02374789 es_ES
dc.description.references Nawaz, K., & Ashraf, M. (2010). Exogenous Application of Glycinebetaine Modulates Activities of Antioxidants in Maize Plants Subjected to Salt Stress. Journal of Agronomy and Crop Science, 196(1), 28-37. doi:10.1111/j.1439-037x.2009.00385.x es_ES
dc.description.references DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. doi:10.1021/ac60111a017 es_ES
dc.description.references Al Hassan, M., Chaura, J., López-Gresa, M. P., Borsai, O., Daniso, E., Donat-Torres, M. P., … Boscaiu, M. (2016). Native-Invasive Plants vs. Halophytes in Mediterranean Salt Marshes: Stress Tolerance Mechanisms in Two Related Species. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00473 es_ES
dc.description.references Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4), 604-611. doi:10.1007/s004250050524 es_ES
dc.description.references Taulavuori, E., Hellström, E., Taulavuori, K., & Laine, K. (2001). Comparison of two methods used to analyse lipid peroxidation from Vaccinium myrtillus (L.) during snow removal, reacclimation and cold acclimation. Journal of Experimental Botany, 52(365), 2375-2380. doi:10.1093/jexbot/52.365.2375 es_ES
dc.description.references Loreto, F., & Velikova, V. (2001). Isoprene Produced by Leaves Protects the Photosynthetic Apparatus against Ozone Damage, Quenches Ozone Products, and Reduces Lipid Peroxidation of Cellular Membranes. Plant Physiology, 127(4), 1781-1787. doi:10.1104/pp.010497 es_ES
dc.description.references Blainski, A., Lopes, G., & de Mello, J. (2013). Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. Molecules, 18(6), 6852-6865. doi:10.3390/molecules18066852 es_ES
dc.description.references Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. doi:10.1016/s0308-8146(98)00102-2 es_ES
dc.description.references Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3 es_ES
dc.description.references Beyer, W. F., & Fridovich, I. (1987). Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry, 161(2), 559-566. doi:10.1016/0003-2697(87)90489-1 es_ES
dc.description.references Aebi, H. (1984). [13] Catalase in vitro. Oxygen Radicals in Biological Systems, 121-126. doi:10.1016/s0076-6879(84)05016-3 es_ES
dc.description.references Connell, J. P., & Mullet, J. E. (1986). Pea Chloroplast Glutathione Reductase: Purification and Characterization. Plant Physiology, 82(2), 351-356. doi:10.1104/pp.82.2.351 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem