- -

Dark matter search results from the complete exposure of the PICO-60 C3F8 bubble chamber

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Dark matter search results from the complete exposure of the PICO-60 C3F8 bubble chamber

Show simple item record

Files in this item

dc.contributor.author Amole, C. es_ES
dc.contributor.author Ardid Ramírez, Miguel es_ES
dc.contributor.author Arnquist, I.J. es_ES
dc.contributor.author Asner, D. M. es_ES
dc.contributor.author Baxter, D. es_ES
dc.contributor.author Behnke, E. es_ES
dc.contributor.author Bressler, M. es_ES
dc.contributor.author Broerman, B. es_ES
dc.contributor.author Cao, G. es_ES
dc.contributor.author Chen, C.J. es_ES
dc.contributor.author Chowdhury, U. es_ES
dc.contributor.author Clark, K. es_ES
dc.contributor.author Collar, J. I. es_ES
dc.contributor.author Cooper, P. S. es_ES
dc.contributor.author Coutu, C. B. es_ES
dc.date.accessioned 2021-02-02T04:32:33Z
dc.date.available 2021-02-02T04:32:33Z
dc.date.issued 2019-07-09 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160423
dc.description.abstract [EN] Final results are reported from operation of the PICO-60 C3F8 dark matter detector, a bubble chamber filled with 52 kg of C3F8 located in the SNOLAB underground laboratory. The chamber was operated at thermodynamic thresholds as low as 1.2 keV without loss of stability. A new blind 1404-kg-day exposure at 2.45 keV threshold was acquired with approximately the same expected total background rate as the previous 1167-kg-day exposure at 3.3 keV. This increased exposure is enabled in part by a new optical tracking analysis to better identify events near detector walls, permitting a larger fiducial volume. These results set the most stringent direct-detection constraint to date on the weakly interacting massive particle (WIMP)-proton spin-dependent cross section at 3.2 x 10(-41) cm(2) for a 25 GeV WIMP, improving on previous PICO results for 3-5 GeV WIMPs by an order of magnitude. es_ES
dc.description.sponsorship The PICO Collaboration wishes to thank SNOLAB and its staff for support through underground space, logistical and technical services. SNOLAB operations are supported by the Canada Foundation for Innovation and the Province of Ontario Ministry of Research and Innovation, with underground access provided by Vale at the Creighton mine site. We are grateful to Genevieve Belanger and Alexander Pukhov of the Universit e de Savoie for their useful correspondence regarding the interpretation of PICO results. We wish to acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canada Foundation for Innovation (CFI) for funding. We acknowledge the support from the National Science Foundation (NSF) (Grants No. 0919526, No. 1506337, No. 1242637, No. 1205987, and No. 1806722). We acknowledge that this work is supported by the U.S. Department of Energy (DOE) Office of Science, Office of High Energy Physics (under Award No. DE-SC-0012161), by the DOE Office of Science Graduate Student Research (SCGSR) award, by DGAPA-UNAM (PAPIIT No. IA100118) and Consejo Nacional de Ciencia y Tecnologia (CONACyT, Mexico, Grants No. 252167 and No. A1-S-8960), by the Department of Atomic Energy (DAE), Government of India, under the Centre for AstroParticle Physics II project (CAPP-II) at the Saha Institute of Nuclear Physics (SINP), European Regional Development FundProject "Engineering applications of microworld physics" (No. CZ. 02.1.01/0.0/0.0/16_019/0000766), and the Spanish (Ministry of Science, Innovation and Universities) Ministerio de Ciencia, Innovacion y Universidades (Red Consolider MultiDark, FPA2017-90566-REDC). This work is partially supported by the Kavli Institute for Cosmological Physics at the University of Chicago through NSF Grant No. 1125897, and an endowment from the Kavli Foundation and its founder Fred Kavli. We also wish to acknowledge the support from Fermi National Accelerator Laboratory under Contract No. DE-AC02-07CH11359, and from Pacific Northwest National Laboratory, which is operated by Battelle for the U.S. Department of Energy under Contract No. DE-AC05-76RL01830. We also thank Compute Canada (www.computecanada.ca) and the Centre for Advanced Computing, ACENET, Calcul Quebec, Compute Ontario and WestGrid for computational support. es_ES
dc.language Inglés es_ES
dc.publisher American Physical Society es_ES
dc.relation.ispartof Physical Review D: covering particles, fields, gravitation, and cosmology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Dark matter search results from the complete exposure of the PICO-60 C3F8 bubble chamber es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1103/PhysRevD.100.022001 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-AC02-07CH11359/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//0919526/US/COUPP-500 kg: Design of a large-Mass Bubble Chamber for Dark Matter Detection/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1806722/US/PICO-500: Improving Acoustic Particle Identification in Superheated-Liquid WIMP Detectors/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1506337/US/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1242637/US/Construction of the COUPP-500kg Bubble Chamber for Dark Matter Detection/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1205987/US/RUI: Searching for WIMP Dark Matter With Superheated Liquids/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MSMT//CZ.02.1.01%2F0.0%2F0.0%2F16_019%2F0000766/CZ/Engineering applications of microworld physics/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//FPA2017-90566-REDC/ES/RED CONSOLIDER MULTIDARK/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNAM/PAPIIT/IA100118/MX/Análisis y simulación de ruidos de fondo en experimentos de neutrinos y de búsqueda de materia oscura/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//A1-S-8960/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-AC05-76RL01830/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UChicago//1125897/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-SC-0012161/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//252167/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Amole, C.; Ardid Ramírez, M.; Arnquist, I.; Asner, DM.; Baxter, D.; Behnke, E.; Bressler, M.... (2019). Dark matter search results from the complete exposure of the PICO-60 C3F8 bubble chamber. Physical Review D: covering particles, fields, gravitation, and cosmology. 100(2):1-9. https://doi.org/10.1103/PhysRevD.100.022001 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1103/PhysRevD.100.022001 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 100 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 2470-0010 es_ES
dc.relation.pasarela S\406264 es_ES
dc.contributor.funder Kavli Foundation es_ES
dc.contributor.funder Ministry of Education, Youth and Sports, República Checa es_ES
dc.contributor.funder University of Chicago es_ES
dc.contributor.funder U.S. Department of Energy es_ES
dc.contributor.funder Canada Foundation for Innovation es_ES
dc.contributor.funder National Science Foundation, EEUU es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universidad Nacional Autónoma de México es_ES
dc.contributor.funder Ontario Ministry of Research and Innovation es_ES
dc.contributor.funder Department of Atomic Energy, Government of India es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.contributor.funder Natural Sciences and Engineering Research Council of Canada es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Olive, K. A. (2014). Review of Particle Physics. Chinese Physics C, 38(9), 090001. doi:10.1088/1674-1137/38/9/090001 es_ES
dc.description.references Komatsu, E., Dunkley, J., Nolta, M. R., Bennett, C. L., Gold, B., Hinshaw, G., … Wright, E. L. (2009). FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION. The Astrophysical Journal Supplement Series, 180(2), 330-376. doi:10.1088/0067-0049/180/2/330 es_ES
dc.description.references Jungman, G., Kamionkowski, M., & Griest, K. (1996). Supersymmetric dark matter. Physics Reports, 267(5-6), 195-373. doi:10.1016/0370-1573(95)00058-5 es_ES
dc.description.references Goodman, M. W., & Witten, E. (1985). Detectability of certain dark-matter candidates. Physical Review D, 31(12), 3059-3063. doi:10.1103/physrevd.31.3059 es_ES
dc.description.references Amole, C., Ardid, M., Arnquist, I. J., Asner, D. M., Baxter, D., Behnke, E., … Campion, P. (2017). Dark Matter Search Results from the PICO−60 C3F8 Bubble Chamber. Physical Review Letters, 118(25). doi:10.1103/physrevlett.118.251301 es_ES
dc.description.references Amole, C., Ardid, M., Asner, D. M., Baxter, D., Behnke, E., Bhattacharjee, P., … Broemmelsiek, D. (2016). Dark matter search results from the PICO-60CF3Ibubble chamber. Physical Review D, 93(5). doi:10.1103/physrevd.93.052014 es_ES
dc.description.references McLure, I. A., Soares, V. A. M., & Edmonds, B. (1982). Surface tension of perfluoropropane, perfluoro-n-butane, perfluoro-n-hexane, perfluoro-octane, perfluorotributylamine and n-pentane. Application of the principle of corresponding states to the surface tension of perfluoroalkanes. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 78(7), 2251. doi:10.1039/f19827802251 es_ES
dc.description.references Baxter, D., Chen, C. J., Crisler, M., Cwiok, T., Dahl, C. E., Grimsted, A., … Zhang, J. (2017). First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering. Physical Review Letters, 118(23). doi:10.1103/physrevlett.118.231301 es_ES
dc.description.references Aubin, F., Auger, M., Genest, M.-H., Giroux, G., Gornea, R., Faust, R., … Storey, C. (2008). Discrimination of nuclear recoils from alpha particles with superheated liquids. New Journal of Physics, 10(10), 103017. doi:10.1088/1367-2630/10/10/103017 es_ES
dc.description.references Amole, C., Ardid, M., Asner, D. M., Baxter, D., Behnke, E., Bhattacharjee, P., … Broemmelsiek, D. (2015). Dark Matter Search Results from the PICO-2LC3F8Bubble Chamber. Physical Review Letters, 114(23). doi:10.1103/physrevlett.114.231302 es_ES
dc.description.references Pozzi, S. A., Padovani, E., & Marseguerra, M. (2003). MCNP-PoliMi: a Monte-Carlo code for correlation measurements. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 513(3), 550-558. doi:10.1016/j.nima.2003.06.012 es_ES
dc.description.references Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., … Barrand, G. (2003). Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250-303. doi:10.1016/s0168-9002(03)01368-8 es_ES
dc.description.references Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce Dubois, P., Asai, M., … Chytracek, R. (2006). Geant4 developments and applications. IEEE Transactions on Nuclear Science, 53(1), 270-278. doi:10.1109/tns.2006.869826 es_ES
dc.description.references Robinson, A. E. (2014). New libraries for simulating neutron scattering in dark matter detector calibrations. Physical Review C, 89(3). doi:10.1103/physrevc.89.032801 es_ES
dc.description.references Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. (2013). emcee: The MCMC Hammer. Publications of the Astronomical Society of the Pacific, 125(925), 306-312. doi:10.1086/670067 es_ES
dc.description.references Amaudruz, P.-A., Baldwin, M., Batygov, M., Beltran, B., Bina, C. E., Bishop, D., … Broerman, B. (2018). First Results from the DEAP-3600 Dark Matter Search with Argon at SNOLAB. Physical Review Letters, 121(7). doi:10.1103/physrevlett.121.071801 es_ES
dc.description.references Cowan, G., Cranmer, K., Gross, E., & Vitells, O. (2011). Asymptotic formulae for likelihood-based tests of new physics. The European Physical Journal C, 71(2). doi:10.1140/epjc/s10052-011-1554-0 es_ES
dc.description.references Lewin, J. D., & Smith, P. F. (1996). Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil. Astroparticle Physics, 6(1), 87-112. doi:10.1016/s0927-6505(96)00047-3 es_ES
dc.description.references Fitzpatrick, A. L., Haxton, W., Katz, E., Lubbers, N., & Xu, Y. (2013). The effective field theory of dark matter direct detection. Journal of Cosmology and Astroparticle Physics, 2013(02), 004-004. doi:10.1088/1475-7516/2013/02/004 es_ES
dc.description.references Anand, N., Fitzpatrick, A. L., & Haxton, W. C. (2014). Weakly interacting massive particle-nucleus elastic scattering response. Physical Review C, 89(6). doi:10.1103/physrevc.89.065501 es_ES
dc.description.references Gresham, M. I., & Zurek, K. M. (2014). Effect of nuclear response functions in dark matter direct detection. Physical Review D, 89(12). doi:10.1103/physrevd.89.123521 es_ES
dc.description.references Gluscevic, V., Gresham, M. I., McDermott, S. D., Peter, A. H. G., & Zurek, K. M. (2015). Identifying the theory of dark matter with direct detection. Journal of Cosmology and Astroparticle Physics, 2015(12), 057-057. doi:10.1088/1475-7516/2015/12/057 es_ES
dc.description.references Amole, C., Ardid, M., Arnquist, I. J., Asner, D. M., Baxter, D., Behnke, E., … Brice, S. J. (2016). Improved dark matter search results from PICO-2L Run 2. Physical Review D, 93(6). doi:10.1103/physrevd.93.061101 es_ES
dc.description.references Behnke, E., Besnier, M., Bhattacharjee, P., Dai, X., Das, M., Davour, A., … Zacek, V. (2017). Final results of the PICASSO dark matter search experiment. Astroparticle Physics, 90, 85-92. doi:10.1016/j.astropartphys.2017.02.005 es_ES
dc.description.references Felizardo, M., Girard, T. A., Morlat, T., Fernandes, A. C., Ramos, A. R., Marques, J. G., … Marques, R. (2014). The SIMPLE Phase II dark matter search. Physical Review D, 89(7). doi:10.1103/physrevd.89.072013 es_ES
dc.description.references Aprile, E., Aalbers, J., Agostini, F., Alfonsi, M., Althueser, L., Amaro, F. D., … Baudis, L. (2019). Constraining the Spin-Dependent WIMP-Nucleon Cross Sections with XENON1T. Physical Review Letters, 122(14). doi:10.1103/physrevlett.122.141301 es_ES
dc.description.references Fu, C., Cui, X., Zhou, X., Chen, X., Chen, Y., … Fang, D. (2017). Spin-Dependent Weakly-Interacting-Massive-Particle–Nucleon Cross Section Limits from First Data of PandaX-II Experiment. Physical Review Letters, 118(7). doi:10.1103/physrevlett.118.071301 es_ES
dc.description.references Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., … Ansseau, I. (2017). Search for annihilating dark matter in the Sun with 3 years of IceCube data. The European Physical Journal C, 77(3). doi:10.1140/epjc/s10052-017-4689-9 es_ES
dc.description.references Tanaka, T., Abe, K., Hayato, Y., Iida, T., Kameda, J., Koshio, Y., … Nakahata, M. (2011). AN INDIRECT SEARCH FOR WEAKLY INTERACTING MASSIVE PARTICLES IN THE SUN USING 3109.6 DAYS OF UPWARD-GOING MUONS IN SUPER-KAMIOKANDE. The Astrophysical Journal, 742(2), 78. doi:10.1088/0004-637x/742/2/78 es_ES
dc.description.references Choi, K., Abe, K., Haga, Y., Hayato, Y., Iyogi, K., Kameda, J., … Nakahata, M. (2015). Search for Neutrinos from Annihilation of Captured Low-Mass Dark Matter Particles in the Sun by Super-Kamiokande. Physical Review Letters, 114(14). doi:10.1103/physrevlett.114.141301 es_ES
dc.description.references Akerib, D. S., Araújo, H. M., Bai, X., Bailey, A. J., Balajthy, J., Beltrame, P., … Boulton, E. M. (2016). Results on the Spin-Dependent Scattering of Weakly Interacting Massive Particles on Nucleons from the Run 3 Data of the LUX Experiment. Physical Review Letters, 116(16). doi:10.1103/physrevlett.116.161302 es_ES
dc.description.references Adrián-Martínez, S., Albert, A., André, M., Anton, G., Ardid, M., Aubert, J.-J., … Basa, S. (2016). Limits on dark matter annihilation in the sun using the ANTARES neutrino telescope. Physics Letters B, 759, 69-74. doi:10.1016/j.physletb.2016.05.019 es_ES
dc.description.references Adrián-Martínez, S., Albert, A., André, M., Anton, G., Ardid, M., Aubert, J.-J., … Basa, S. (2016). A search for Secluded Dark Matter in the Sun with the ANTARES neutrino telescope. Journal of Cosmology and Astroparticle Physics, 2016(05), 016-016. doi:10.1088/1475-7516/2016/05/016 es_ES
dc.description.references Agnes, P., Albuquerque, I. F. M., Alexander, T., Alton, A. K., Araujo, G. R., Asner, D. M., … Batignani, G. (2018). Low-Mass Dark Matter Search with the DarkSide-50 Experiment. Physical Review Letters, 121(8). doi:10.1103/physrevlett.121.081307 es_ES
dc.description.references Aprile, E., Aalbers, J., Agostini, F., Alfonsi, M., Althueser, L., Amaro, F. D., … Bauermeister, B. (2018). Dark Matter Search Results from a One Ton-Year Exposure of XENON1T. Physical Review Letters, 121(11). doi:10.1103/physrevlett.121.111302 es_ES
dc.description.references Akerib, D. S., Alsum, S., Araújo, H. M., Bai, X., Bailey, A. J., Balajthy, J., … Biesiadzinski, T. P. (2017). Results from a Search for Dark Matter in the Complete LUX Exposure. Physical Review Letters, 118(2). doi:10.1103/physrevlett.118.021303 es_ES
dc.description.references Tan, A., Xiao, M., Cui, X., Chen, X., Chen, Y., Fang, D., … Gong, H. (2016). Dark Matter Results from First 98.7 Days of Data from the PandaX-II Experiment. Physical Review Letters, 117(12). doi:10.1103/physrevlett.117.121303 es_ES
dc.description.references Agnese, R., Anderson, A. J., Aramaki, T., Asai, M., Baker, W., Balakishiyeva, D., … Billard, J. (2016). New Results from the Search for Low-Mass Weakly Interacting Massive Particles with the CDMS Low Ionization Threshold Experiment. Physical Review Letters, 116(7). doi:10.1103/physrevlett.116.071301 es_ES
dc.description.references Angloher, G., Bento, A., Bucci, C., Canonica, L., Defay, X., Erb, A., … Zöller, A. (2016). Results on light dark matter particles with a low-threshold CRESST-II detector. The European Physical Journal C, 76(1). doi:10.1140/epjc/s10052-016-3877-3 es_ES
dc.description.references Aprile, E., Aalbers, J., Agostini, F., Alfonsi, M., Amaro, F. D., Anthony, M., … Bauermeister, B. (2016). XENON100 dark matter results from a combination of 477 live days. Physical Review D, 94(12). doi:10.1103/physrevd.94.122001 es_ES
dc.description.references Agnese, R., Anderson, A. J., Asai, M., Balakishiyeva, D., Basu Thakur, R., Bauer, D. A., … Bowles, M. A. (2014). Search for Low-Mass Weakly Interacting Massive Particles with SuperCDMS. Physical Review Letters, 112(24). doi:10.1103/physrevlett.112.241302 es_ES
dc.description.references Agnese, R., Anderson, A. J., Asai, M., Balakishiyeva, D., Barker, D., Basu Thakur, R., … Bowles, M. A. (2015). Improved WIMP-search reach of the CDMS II germanium data. Physical Review D, 92(7). doi:10.1103/physrevd.92.072003 es_ES
dc.description.references Hehn, L., Armengaud, E., Arnaud, Q., Augier, C., Benoît, A., Bergé, L., … Yakushev, E. (2016). Improved EDELWEISS-III sensitivity for low-mass WIMPs using a profile likelihood approach. The European Physical Journal C, 76(10). doi:10.1140/epjc/s10052-016-4388-y es_ES


This item appears in the following Collection(s)

Show simple item record