- -

Polyamines as Quality Control Metabolites Operating at the Post-Transcriptional Level

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Polyamines as Quality Control Metabolites Operating at the Post-Transcriptional Level

Show full item record

Poidevin, L.; Unal, D.; Belda-Palazón, B.; Ferrando Monleón, AR. (2019). Polyamines as Quality Control Metabolites Operating at the Post-Transcriptional Level. Plants. 8(4):1-13. https://doi.org/10.3390/plants8040109

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160424

Files in this item

Item Metadata

Title: Polyamines as Quality Control Metabolites Operating at the Post-Transcriptional Level
Author: Poidevin, Laetitia Unal, Dilek Belda-Palazón, Borja Ferrando Monleón, Alejandro Ramón
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
Abstract:
[EN] Plant polyamines (PAs) have been assigned a large number of physiological functions with unknown molecular mechanisms in many cases. Among the most abundant and studied polyamines, two of them, namely spermidine (Spd) ...[+]
Subjects: Polyamines , Spermidine , Thermospermine , Nonsense-mediated decay , No-go decay , Non-stop decay , Quality control , Translation
Copyrigths: Reconocimiento (by)
Source:
Plants. (eissn: 2223-7747 )
DOI: 10.3390/plants8040109
Publisher:
MDPI
Publisher version: https://doi.org/10.3390/plants8040109
Project ID:
info:eu-repo/grantAgreement/MINECO//BIO2015-70483-R/ES/PAPEL DE LA ESPERMIDINA Y DE LA BIOSINTESIS DE PROTEINAS EN LA TOLERANCIA DEL POLEN A LAS ALTAS TEMPERATURAS/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2017%2F039/
info:eu-repo/grantAgreement/EMBO//STF-7308/
Thanks:
A.F. was funded by the Spanish Ministry of Science, Innovation and Universities, grant number BIO2015-70483-R, and B.B.-P. was funded by the Generalitat Valenciana grant, VALi+d GVA APOSTD/2017/039. D.U. was a recipient ...[+]
Type: Artículo

References

Graille, M., & Séraphin, B. (2012). Surveillance pathways rescuing eukaryotic ribosomes lost in translation. Nature Reviews Molecular Cell Biology, 13(11), 727-735. doi:10.1038/nrm3457

Preissler, S., & Deuerling, E. (2012). Ribosome-associated chaperones as key players in proteostasis. Trends in Biochemical Sciences, 37(7), 274-283. doi:10.1016/j.tibs.2012.03.002

Fuell, C., Elliott, K. A., Hanfrey, C. C., Franceschetti, M., & Michael, A. J. (2010). Polyamine biosynthetic diversity in plants and algae. Plant Physiology and Biochemistry, 48(7), 513-520. doi:10.1016/j.plaphy.2010.02.008 [+]
Graille, M., & Séraphin, B. (2012). Surveillance pathways rescuing eukaryotic ribosomes lost in translation. Nature Reviews Molecular Cell Biology, 13(11), 727-735. doi:10.1038/nrm3457

Preissler, S., & Deuerling, E. (2012). Ribosome-associated chaperones as key players in proteostasis. Trends in Biochemical Sciences, 37(7), 274-283. doi:10.1016/j.tibs.2012.03.002

Fuell, C., Elliott, K. A., Hanfrey, C. C., Franceschetti, M., & Michael, A. J. (2010). Polyamine biosynthetic diversity in plants and algae. Plant Physiology and Biochemistry, 48(7), 513-520. doi:10.1016/j.plaphy.2010.02.008

Vera-Sirera, F., Minguet, E. G., Singh, S. K., Ljung, K., Tuominen, H., Blázquez, M. A., & Carbonell, J. (2010). Role of polyamines in plant vascular development. Plant Physiology and Biochemistry, 48(7), 534-539. doi:10.1016/j.plaphy.2010.01.011

IGARASHI, K., SUGAWARA, K., IZUMI, I., NAGAYAMA, C., & HIROSE, S. (1974). Effect of Polyamines on Polyphenylalanine Synthesis by Escherichia coli and Rat-Liver Ribosomes. European Journal of Biochemistry, 48(2), 495-502. doi:10.1111/j.1432-1033.1974.tb03790.x

IGARASHI, K., HASHIMOTO, S., MIYAKE, A., KASHIWAGI, K., & HIROSE, S. (2005). Increase of Fidelity of Polypeptide Synthesis by Spermidine in Eukaryotic Cell-Free Systems. European Journal of Biochemistry, 128(2-3), 597-604. doi:10.1111/j.1432-1033.1982.tb07006.x

Echandi, G., & Algranati, I. D. (1975). Defective 30S ribosomal particles in a polyamine auxotroph of Escherichia coli. Biochemical and Biophysical Research Communications, 67(3), 1185-1191. doi:10.1016/0006-291x(75)90798-6

Igarashi, K., Kishida, K., & Hirose, S. (1980). Stimulation by polyamines of enzymatic methylation of two adjacent adenines near the 3′ end of 16S ribosomal RNA of Escherichia coli. Biochemical and Biophysical Research Communications, 96(2), 678-684. doi:10.1016/0006-291x(80)91408-4

Hetrick, B., Khade, P. K., Lee, K., Stephen, J., Thomas, A., & Joseph, S. (2010). Polyamines Accelerate Codon Recognition by Transfer RNAs on the Ribosome. Biochemistry, 49(33), 7179-7189. doi:10.1021/bi1009776

Amarantos, I. (2000). Photoaffinity polyamines: interactions with AcPhe-tRNA free in solution or bound at the P-site of Escherichia coli ribosomes. Nucleic Acids Research, 28(19), 3733-3742. doi:10.1093/nar/28.19.3733

Amarantos, I. (2002). The identification of spermine binding sites in 16S rRNA allows interpretation of the spermine effect on ribosomal 30S subunit functions. Nucleic Acids Research, 30(13), 2832-2843. doi:10.1093/nar/gkf404

Xaplanteri, M. A. (2005). Localization of spermine binding sites in 23S rRNA by photoaffinity labeling: parsing the spermine contribution to ribosomal 50S subunit functions. Nucleic Acids Research, 33(9), 2792-2805. doi:10.1093/nar/gki557

Dever, T. E., & Ivanov, I. P. (2018). Roles of polyamines in translation. Journal of Biological Chemistry, 293(48), 18719-18729. doi:10.1074/jbc.tm118.003338

Ivanov, I. P. (2000). Conservation of polyamine regulation by translational frameshifting from yeast to mammals. The EMBO Journal, 19(8), 1907-1917. doi:10.1093/emboj/19.8.1907

Brandman, O., & Hegde, R. S. (2016). Ribosome-associated protein quality control. Nature Structural & Molecular Biology, 23(1), 7-15. doi:10.1038/nsmb.3147

Behm-Ansmant, I., Kashima, I., Rehwinkel, J., Saulière, J., Wittkopp, N., & Izaurralde, E. (2007). mRNA quality control: An ancient machinery recognizes and degrades mRNAs with nonsense codons. FEBS Letters, 581(15), 2845-2853. doi:10.1016/j.febslet.2007.05.027

Chang, Y.-F., Imam, J. S., & Wilkinson, M. F. (2007). The Nonsense-Mediated Decay RNA Surveillance Pathway. Annual Review of Biochemistry, 76(1), 51-74. doi:10.1146/annurev.biochem.76.050106.093909

Brogna, S., & Wen, J. (2009). Nonsense-mediated mRNA decay (NMD) mechanisms. Nature Structural & Molecular Biology, 16(2), 107-113. doi:10.1038/nsmb.1550

Amrani, N., Sachs, M. S., & Jacobson, A. (2006). Early nonsense: mRNA decay solves a translational problem. Nature Reviews Molecular Cell Biology, 7(6), 415-425. doi:10.1038/nrm1942

Rebbapragada, I., & Lykke-Andersen, J. (2009). Execution of nonsense-mediated mRNA decay: what defines a substrate? Current Opinion in Cell Biology, 21(3), 394-402. doi:10.1016/j.ceb.2009.02.007

Peccarelli, M., & Kebaara, B. W. (2014). Regulation of Natural mRNAs by the Nonsense-Mediated mRNA Decay Pathway. Eukaryotic Cell, 13(9), 1126-1135. doi:10.1128/ec.00090-14

Kurihara, Y., Matsui, A., Hanada, K., Kawashima, M., Ishida, J., Morosawa, T., … Seki, M. (2009). Genome-wide suppression of aberrant mRNA-like noncoding RNAs by NMD in Arabidopsis. Proceedings of the National Academy of Sciences, 106(7), 2453-2458. doi:10.1073/pnas.0808902106

Drechsel, G., Kahles, A., Kesarwani, A. K., Stauffer, E., Behr, J., Drewe, P., … Wachter, A. (2013). Nonsense-Mediated Decay of Alternative Precursor mRNA Splicing Variants Is a Major Determinant of the Arabidopsis Steady State Transcriptome. The Plant Cell, 25(10), 3726-3742. doi:10.1105/tpc.113.115485

Kalyna, M., Simpson, C. G., Syed, N. H., Lewandowska, D., Marquez, Y., Kusenda, B., … Brown, J. W. S. (2011). Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis. Nucleic Acids Research, 40(6), 2454-2469. doi:10.1093/nar/gkr932

Leeds, P., Wood, J. M., Lee, B. S., & Culbertson, M. R. (1992). Gene products that promote mRNA turnover in Saccharomyces cerevisiae. Molecular and Cellular Biology, 12(5), 2165-2177. doi:10.1128/mcb.12.5.2165

Kerényi, Z., Mérai, Z., Hiripi, L., Benkovics, A., Gyula, P., Lacomme, C., … Silhavy, D. (2008). Inter-kingdom conservation of mechanism of nonsense-mediated mRNA decay. The EMBO Journal, 27(11), 1585-1595. doi:10.1038/emboj.2008.88

Shaul, O. (2015). Unique Aspects of Plant Nonsense-Mediated mRNA Decay. Trends in Plant Science, 20(11), 767-779. doi:10.1016/j.tplants.2015.08.011

Rayson, S., Arciga-Reyes, L., Wootton, L., De Torres Zabala, M., Truman, W., Graham, N., … Davies, B. (2012). A Role for Nonsense-Mediated mRNA Decay in Plants: Pathogen Responses Are Induced in Arabidopsis thaliana NMD Mutants. PLoS ONE, 7(2), e31917. doi:10.1371/journal.pone.0031917

Shi, C., Baldwin, I. T., & Wu, J. (2012). Arabidopsis Plants Having Defects in Nonsense-mediated mRNA Decay Factors UPF1, UPF2, and UPF3 Show Photoperiod-dependent Phenotypes in Development and Stress Responses. Journal of Integrative Plant Biology, 54(2), 99-114. doi:10.1111/j.1744-7909.2012.01093.x

Nasim, Z., Fahim, M., & Ahn, J. H. (2017). Possible Role of MADS AFFECTING FLOWERING 3 and B-BOX DOMAIN PROTEIN 19 in Flowering Time Regulation of Arabidopsis Mutants with Defects in Nonsense-Mediated mRNA Decay. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00191

Degtiar, E., Fridman, A., Gottlieb, D., Vexler, K., Berezin, I., Farhi, R., … Shaul, O. (2015). The feedback control of UPF3 is crucial for RNA surveillance in plants. Nucleic Acids Research, 43(8), 4219-4235. doi:10.1093/nar/gkv237

Popp, M. W.-L., & Maquat, L. E. (2013). Organizing Principles of Mammalian Nonsense-Mediated mRNA Decay. Annual Review of Genetics, 47(1), 139-165. doi:10.1146/annurev-genet-111212-133424

Dai, Y., Li, W., & An, L. (2015). NMD mechanism and the functions of Upf proteins in plant. Plant Cell Reports, 35(1), 5-15. doi:10.1007/s00299-015-1867-9

Karousis, E. D., & Mühlemann, O. (2018). Nonsense-Mediated mRNA Decay Begins Where Translation Ends. Cold Spring Harbor Perspectives in Biology, 11(2), a032862. doi:10.1101/cshperspect.a032862

Doma, M. K., & Parker, R. (2006). Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature, 440(7083), 561-564. doi:10.1038/nature04530

Atkinson, G. C., Baldauf, S. L., & Hauryliuk, V. (2008). Evolution of nonstop, no-go and nonsense-mediated mRNA decay and their termination factor-derived components. BMC Evolutionary Biology, 8(1), 290. doi:10.1186/1471-2148-8-290

Szádeczky-Kardoss, I., Gál, L., Auber, A., Taller, J., & Silhavy, D. (2018). The No-go decay system degrades plant mRNAs that contain a long A-stretch in the coding region. Plant Science, 275, 19-27. doi:10.1016/j.plantsci.2018.07.008

Shoemaker, C. J., Eyler, D. E., & Green, R. (2010). Dom34:Hbs1 Promotes Subunit Dissociation and Peptidyl-tRNA Drop-Off to Initiate No-Go Decay. Science, 330(6002), 369-372. doi:10.1126/science.1192430

Tsuboi, T., Kuroha, K., Kudo, K., Makino, S., Inoue, E., Kashima, I., & Inada, T. (2012). Dom34:Hbs1 Plays a General Role in Quality-Control Systems by Dissociation of a Stalled Ribosome at the 3′ End of Aberrant mRNA. Molecular Cell, 46(4), 518-529. doi:10.1016/j.molcel.2012.03.013

Buchan, J. R., & Stansfield, I. (2007). Halting a cellular production line: responses to ribosomal pausing during translation. Biology of the Cell, 99(9), 475-487. doi:10.1042/bc20070037

Simms, C. L., Yan, L. L., & Zaher, H. S. (2017). Ribosome Collision Is Critical for Quality Control during No-Go Decay. Molecular Cell, 68(2), 361-373.e5. doi:10.1016/j.molcel.2017.08.019

Ozsolak, F., Kapranov, P., Foissac, S., Kim, S. W., Fishilevich, E., Monaghan, A. P., … Milos, P. M. (2010). Comprehensive Polyadenylation Site Maps in Yeast and Human Reveal Pervasive Alternative Polyadenylation. Cell, 143(6), 1018-1029. doi:10.1016/j.cell.2010.11.020

Dimitrova, L. N., Kuroha, K., Tatematsu, T., & Inada, T. (2009). Nascent Peptide-dependent Translation Arrest Leads to Not4p-mediated Protein Degradation by the Proteasome. Journal of Biological Chemistry, 284(16), 10343-10352. doi:10.1074/jbc.m808840200

Koutmou, K. S., Schuller, A. P., Brunelle, J. L., Radhakrishnan, A., Djuranovic, S., & Green, R. (2015). Ribosomes slide on lysine-encoding homopolymeric A stretches. eLife, 4. doi:10.7554/elife.05534

Van Hoof, A., Frischmeyer, P. A., Dietz, H. C., & Parker, R. (2002). Exosome-Mediated Recognition and Degradation of mRNAs Lacking a Termination Codon. Science, 295(5563), 2262-2264. doi:10.1126/science.1067272

Frischmeyer, P. A., van Hoof, A., O’Donnell, K., Guerrerio, A. L., Parker, R., & Dietz, H. C. (2002). An mRNA Surveillance Mechanism That Eliminates Transcripts Lacking Termination Codons. Science, 295(5563), 2258-2261. doi:10.1126/science.1067338

Szádeczky-Kardoss, I., Csorba, T., Auber, A., Schamberger, A., Nyikó, T., Taller, J., … Silhavy, D. (2018). The nonstop decay and the RNA silencing systems operate cooperatively in plants. Nucleic Acids Research, 46(9), 4632-4648. doi:10.1093/nar/gky279

Hanzawa, Y., Takahashi, T., & Komeda, Y. (1997). ACL5: an Arabidopsis gene required for internodal elongation after flowering. The Plant Journal, 12(4), 863-874. doi:10.1046/j.1365-313x.1997.12040863.x

Hanzawa, Y. (2000). ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. The EMBO Journal, 19(16), 4248-4256. doi:10.1093/emboj/19.16.4248

Knott, J. M., Römer, P., & Sumper, M. (2007). Putative spermine synthases fromThalassiosira pseudonanaandArabidopsis thalianasynthesize thermospermine rather than spermine. FEBS Letters, 581(16), 3081-3086. doi:10.1016/j.febslet.2007.05.074

Minguet, E. G., Vera-Sirera, F., Marina, A., Carbonell, J., & Blazquez, M. A. (2008). Evolutionary Diversification in Polyamine Biosynthesis. Molecular Biology and Evolution, 25(10), 2119-2128. doi:10.1093/molbev/msn161

Milhinhos, A., Prestele, J., Bollhöner, B., Matos, A., Vera-Sirera, F., Rambla, J. L., … Miguel, C. M. (2013). Thermospermine levels are controlled by an auxin-dependent feedback loop mechanism inPopulusxylem. The Plant Journal, 75(4), 685-698. doi:10.1111/tpj.12231

Baima, S., Forte, V., Possenti, M., Peñalosa, A., Leoni, G., Salvi, S., … Morelli, G. (2014). Negative Feedback Regulation of Auxin Signaling by ATHB8/ACL5–BUD2 Transcription Module. Molecular Plant, 7(6), 1006-1025. doi:10.1093/mp/ssu051

Kakehi, J. -i., Kuwashiro, Y., Niitsu, M., & Takahashi, T. (2008). Thermospermine is Required for Stem Elongation in Arabidopsis thaliana. Plant and Cell Physiology, 49(9), 1342-1349. doi:10.1093/pcp/pcn109

Clay, N. K., & Nelson, T. (2005). Arabidopsis thickvein Mutation Affects Vein Thickness and Organ Vascularization, and Resides in a Provascular Cell-Specific Spermine Synthase Involved in Vein Definition and in Polar Auxin Transport. Plant Physiology, 138(2), 767-777. doi:10.1104/pp.104.055756

Muñiz, L., Minguet, E. G., Singh, S. K., Pesquet, E., Vera-Sirera, F., Moreau-Courtois, C. L., … Tuominen, H. (2008). ACAULIS5 controls Arabidopsis xylem specification through the prevention of premature cell death. Development, 135(15), 2573-2582. doi:10.1242/dev.019349

Imai, A., Hanzawa, Y., Komura, M., Yamamoto, K. T., Komeda, Y., & Takahashi, T. (2006). The dwarf phenotype of the Arabidopsis acl5 mutant is suppressed by a mutation in an upstream ORF of a bHLH gene. Development, 133(18), 3575-3585. doi:10.1242/dev.02535

Imai, A., Komura, M., Kawano, E., Kuwashiro, Y., & Takahashi, T. (2008). A semi-dominant mutation in the ribosomal protein L10 gene suppresses the dwarf phenotype of theacl5mutant inArabidopsis thaliana. The Plant Journal, 56(6), 881-890. doi:10.1111/j.1365-313x.2008.03647.x

Kakehi, J.-I., Kawano, E., Yoshimoto, K., Cai, Q., Imai, A., & Takahashi, T. (2015). Mutations in Ribosomal Proteins, RPL4 and RACK1, Suppress the Phenotype of a Thermospermine-Deficient Mutant of Arabidopsis thaliana. PLOS ONE, 10(1), e0117309. doi:10.1371/journal.pone.0117309

Cai, Q., Fukushima, H., Yamamoto, M., Ishii, N., Sakamoto, T., Kurata, T., … Takahashi, T. (2016). TheSAC51Family Plays a Central Role in Thermospermine Responses in Arabidopsis. Plant and Cell Physiology, 57(8), 1583-1592. doi:10.1093/pcp/pcw113

Vera-Sirera, F., De Rybel, B., Úrbez, C., Kouklas, E., Pesquera, M., Álvarez-Mahecha, J. C., … Blázquez, M. A. (2015). A bHLH-Based Feedback Loop Restricts Vascular Cell Proliferation in Plants. Developmental Cell, 35(4), 432-443. doi:10.1016/j.devcel.2015.10.022

Yamamoto, M., & Takahashi, T. (2017). Thermospermine enhances translation of SAC51 and SACL1 in Arabidopsis. Plant Signaling & Behavior, 12(1), e1276685. doi:10.1080/15592324.2016.1276685

Von Arnim, A. G., Jia, Q., & Vaughn, J. N. (2014). Regulation of plant translation by upstream open reading frames. Plant Science, 214, 1-12. doi:10.1016/j.plantsci.2013.09.006

Weiss, M. C., Sousa, F. L., Mrnjavac, N., Neukirchen, S., Roettger, M., Nelson-Sathi, S., & Martin, W. F. (2016). The physiology and habitat of the last universal common ancestor. Nature Microbiology, 1(9). doi:10.1038/nmicrobiol.2016.116

Imai, A., Matsuyama, T., Hanzawa, Y., Akiyama, T., Tamaoki, M., Saji, H., … Takahashi, T. (2004). Spermidine Synthase Genes Are Essential for Survival of Arabidopsis. Plant Physiology, 135(3), 1565-1573. doi:10.1104/pp.104.041699

Hamasaki-Katagiri, N., Tabor, C. W., & Tabor, H. (1997). Spermidine biosynthesis in Saccharomyces cerevisiae: Polyaminerequirement of a null mutant of the SPE3 gene (spermidine synthase). Gene, 187(1), 35-43. doi:10.1016/s0378-1119(96)00660-9

Mandal, S., Mandal, A., Johansson, H. E., Orjalo, A. V., & Park, M. H. (2013). Depletion of cellular polyamines, spermidine and spermine, causes a total arrest in translation and growth in mammalian cells. Proceedings of the National Academy of Sciences, 110(6), 2169-2174. doi:10.1073/pnas.1219002110

Park, M. H., & Wolff, E. C. (2018). Hypusine, a polyamine-derived amino acid critical for eukaryotic translation. Journal of Biological Chemistry, 293(48), 18710-18718. doi:10.1074/jbc.tm118.003341

Park, M. H. (2006). The Post-Translational Synthesis of a Polyamine-Derived Amino Acid, Hypusine, in the Eukaryotic Translation Initiation Factor 5A (eIF5A). The Journal of Biochemistry, 139(2), 161-169. doi:10.1093/jb/mvj034

Chattopadhyay, M. K., Park, M. H., & Tabor, H. (2008). Hypusine modification for growth is the major function of spermidine in Saccharomyces cerevisiae polyamine auxotrophs grown in limiting spermidine. Proceedings of the National Academy of Sciences, 105(18), 6554-6559. doi:10.1073/pnas.0710970105

Pällmann, N., Braig, M., Sievert, H., Preukschas, M., Hermans-Borgmeyer, I., Schweizer, M., … Balabanov, S. (2015). Biological Relevance and Therapeutic Potential of the Hypusine Modification System. Journal of Biological Chemistry, 290(30), 18343-18360. doi:10.1074/jbc.m115.664490

Nishimura, K., Lee, S. B., Park, J. H., & Park, M. H. (2011). Essential role of eIF5A-1 and deoxyhypusine synthase in mouse embryonic development. Amino Acids, 42(2-3), 703-710. doi:10.1007/s00726-011-0986-z

Pagnussat, G. C., Yu, H.-J., Ngo, Q. A., Rajani, S., Mayalagu, S., Johnson, C. S., … Sundaresan, V. (2005). Genetic and molecular identification of genes required for female gametophyte development and function inArabidopsis. Development, 132(3), 603-614. doi:10.1242/dev.01595

THOMAS, A., GOUMANS, H., AMESZ, H., BENNE, R., & VOORMA, H. O. (1979). A Comparison of the Initiation Factors of Eukaryotic Protein Synthesis from Ribosomes and from the Postribosomal Supernatant. European Journal of Biochemistry, 98(2), 329-337. doi:10.1111/j.1432-1033.1979.tb13192.x

Cooper, H. L., Park, M. H., Folk, J. E., Safer, B., & Braverman, R. (1983). Identification of the hypusine-containing protein hy+ as translation initiation factor eIF-4D. Proceedings of the National Academy of Sciences, 80(7), 1854-1857. doi:10.1073/pnas.80.7.1854

Shiba, T., Mizote, H., Kaneko, T., Nakajima, T., Yasuo, K., & sano, I. (1971). Hypusine, a new amino acid occurring in bovine brain. Biochimica et Biophysica Acta (BBA) - General Subjects, 244(3), 523-531. doi:10.1016/0304-4165(71)90069-9

Park, M. H., Cooper, H. L., & Folk, J. E. (1981). Identification of hypusine, an unusual amino acid, in a protein from human lymphocytes and of spermidine as its biosynthetic precursor. Proceedings of the National Academy of Sciences, 78(5), 2869-2873. doi:10.1073/pnas.78.5.2869

Saini, P., Eyler, D. E., Green, R., & Dever, T. E. (2009). Hypusine-containing protein eIF5A promotes translation elongation. Nature, 459(7243), 118-121. doi:10.1038/nature08034

Schuller, A. P., Wu, C. C.-C., Dever, T. E., Buskirk, A. R., & Green, R. (2017). eIF5A Functions Globally in Translation Elongation and Termination. Molecular Cell, 66(2), 194-205.e5. doi:10.1016/j.molcel.2017.03.003

Gäbel, K., Schmitt, J., Schulz, S., Näther, D. J., & Soppa, J. (2013). A Comprehensive Analysis of the Importance of Translation Initiation Factors for Haloferax volcanii Applying Deletion and Conditional Depletion Mutants. PLoS ONE, 8(11), e77188. doi:10.1371/journal.pone.0077188

Kyrpides, N. C., & Woese, C. R. (1998). Universally conserved translation initiation factors. Proceedings of the National Academy of Sciences, 95(1), 224-228. doi:10.1073/pnas.95.1.224

Navarre, W. W., Zou, S. B., Roy, H., Xie, J. L., Savchenko, A., Singer, A., … Fang, F. C. (2010). PoxA, YjeK, and Elongation Factor P Coordinately Modulate Virulence and Drug Resistance in Salmonella enterica. Molecular Cell, 39(2), 209-221. doi:10.1016/j.molcel.2010.06.021

Lassak, J., Keilhauer, E. C., Fürst, M., Wuichet, K., Gödeke, J., Starosta, A. L., … Jung, K. (2015). Arginine-rhamnosylation as new strategy to activate translation elongation factor P. Nature Chemical Biology, 11(4), 266-270. doi:10.1038/nchembio.1751

Bullwinkle, T. J., Zou, S. B., Rajkovic, A., Hersch, S. J., Elgamal, S., Robinson, N., … Ibba, M. (2013). (R)-β-Lysine-modified Elongation Factor P Functions in Translation Elongation. Journal of Biological Chemistry, 288(6), 4416-4423. doi:10.1074/jbc.m112.438879

Balibar, C. J., Iwanowicz, D., & Dean, C. R. (2013). Elongation Factor P is Dispensable in Escherichia coli and Pseudomonas aeruginosa. Current Microbiology, 67(3), 293-299. doi:10.1007/s00284-013-0363-0

Blaha, G., Stanley, R. E., & Steitz, T. A. (2009). Formation of the First Peptide Bond: The Structure of EF-P Bound to the 70 S Ribosome. Science, 325(5943), 966-970. doi:10.1126/science.1175800

Melnikov, S., Mailliot, J., Shin, B.-S., Rigger, L., Yusupova, G., Micura, R., … Yusupov, M. (2016). Crystal Structure of Hypusine-Containing Translation Factor eIF5A Bound to a Rotated Eukaryotic Ribosome. Journal of Molecular Biology, 428(18), 3570-3576. doi:10.1016/j.jmb.2016.05.011

Schmidt, C., Becker, T., Heuer, A., Braunger, K., Shanmuganathan, V., Pech, M., … Beckmann, R. (2015). Structure of the hypusinylated eukaryotic translation factor eIF-5A bound to the ribosome. Nucleic Acids Research, 44(4), 1944-1951. doi:10.1093/nar/gkv1517

Gutierrez, E., Shin, B.-S., Woolstenhulme, C. J., Kim, J.-R., Saini, P., Buskirk, A. R., & Dever, T. E. (2013). eIF5A Promotes Translation of Polyproline Motifs. Molecular Cell, 51(1), 35-45. doi:10.1016/j.molcel.2013.04.021

Doerfel, L. K., Wohlgemuth, I., Kothe, C., Peske, F., Urlaub, H., & Rodnina, M. V. (2013). EF-P Is Essential for Rapid Synthesis of Proteins Containing Consecutive Proline Residues. Science, 339(6115), 85-88. doi:10.1126/science.1229017

Ude, S., Lassak, J., Starosta, A. L., Kraxenberger, T., Wilson, D. N., & Jung, K. (2013). Translation Elongation Factor EF-P Alleviates Ribosome Stalling at Polyproline Stretches. Science, 339(6115), 82-85. doi:10.1126/science.1228985

Pavlov, M. Y., Watts, R. E., Tan, Z., Cornish, V. W., Ehrenberg, M., & Forster, A. C. (2008). Slow peptide bond formation by proline and other N-alkylamino acids in translation. Proceedings of the National Academy of Sciences, 106(1), 50-54. doi:10.1073/pnas.0809211106

Belda-Palazón, B., Almendáriz, C., Martí, E., Carbonell, J., & Ferrando, A. (2016). Relevance of the Axis Spermidine/eIF5A for Plant Growth and Development. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00245

Li, T., Belda-Palazón, B., Ferrando, A., & Alepuz, P. (2014). Fertility and Polarized Cell Growth Depends on eIF5A for Translation of Polyproline-Rich Formins in Saccharomyces cerevisiae. Genetics, 197(4), 1191-1200. doi:10.1534/genetics.114.166926

Duguay, J., Jamal, S., Liu, Z., Wang, T.-W., & Thompson, J. E. (2007). Leaf-specific suppression of deoxyhypusine synthase in Arabidopsis thaliana enhances growth without negative pleiotropic effects. Journal of Plant Physiology, 164(4), 408-420. doi:10.1016/j.jplph.2006.02.001

Feng, H., Chen, Q., Feng, J., Zhang, J., Yang, X., & Zuo, J. (2007). Functional Characterization of the Arabidopsis Eukaryotic Translation Initiation Factor 5A-2 That Plays a Crucial Role in Plant Growth and Development by Regulating Cell Division, Cell Growth, and Cell Death. Plant Physiology, 144(3), 1531-1545. doi:10.1104/pp.107.098079

Liu, Z., Duguay, J., Ma, F., Wang, T.-W., Tshin, R., Hopkins, M. T., … Thompson, J. E. (2008). Modulation of eIF5A1 expression alters xylem abundance in Arabidopsis thaliana. Journal of Experimental Botany, 59(4), 939-950. doi:10.1093/jxb/ern017

MA, F., LIU, Z., WANG, T.-W., HOPKINS, M. T., PETERSON, C. A., & THOMPSON, J. E. (2010). Arabidopsis eIF5A3 influences growth and the response to osmotic and nutrient stress. Plant, Cell & Environment, 33(10), 1682-1696. doi:10.1111/j.1365-3040.2010.02173.x

Buskirk, A. R., & Green, R. (2017). Ribosome pausing, arrest and rescue in bacteria and eukaryotes. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1716), 20160183. doi:10.1098/rstb.2016.0183

Dever, T. E., Dinman, J. D., & Green, R. (2018). Translation Elongation and Recoding in Eukaryotes. Cold Spring Harbor Perspectives in Biology, 10(8), a032649. doi:10.1101/cshperspect.a032649

Zuk, D. (1998). A single amino acid substitution in yeast eIF-5A results in mRNA stabilization. The EMBO Journal, 17(10), 2914-2925. doi:10.1093/emboj/17.10.2914

Schrader, R., Young, C., Kozian, D., Hoffmann, R., & Lottspeich, F. (2006). Temperature-sensitive eIF5A Mutant Accumulates Transcripts Targeted to the Nonsense-mediated Decay Pathway. Journal of Biological Chemistry, 281(46), 35336-35346. doi:10.1074/jbc.m601460200

Hoque, M., Park, J. Y., Chang, Y., Luchessi, A. D., Cambiaghi, T. D., Shamanna, R., … Mathews, M. B. (2017). Regulation of gene expression by translation factor eIF5A: Hypusine-modified eIF5A enhances nonsense-mediated mRNA decay in human cells. Translation, 5(2), e1366294. doi:10.1080/21690731.2017.1366294

Li, C. H., Ohn, T., Ivanov, P., Tisdale, S., & Anderson, P. (2010). eIF5A Promotes Translation Elongation, Polysome Disassembly and Stress Granule Assembly. PLoS ONE, 5(4), e9942. doi:10.1371/journal.pone.0009942

Miller-Fleming, L., Olin-Sandoval, V., Campbell, K., & Ralser, M. (2015). Remaining Mysteries of Molecular Biology: The Role of Polyamines in the Cell. Journal of Molecular Biology, 427(21), 3389-3406. doi:10.1016/j.jmb.2015.06.020

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record