- -

Stealth Acoustic Materials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Stealth Acoustic Materials

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Romero-García, V. es_ES
dc.contributor.author Lamothe, N. es_ES
dc.contributor.author Theocharis, G. es_ES
dc.contributor.author Richoux, O. es_ES
dc.contributor.author García-Raffi, L. M. es_ES
dc.date.accessioned 2021-02-02T04:32:42Z
dc.date.available 2021-02-02T04:32:42Z
dc.date.issued 2019-05-28 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160428
dc.description.abstract [EN] We report the experimental design of a one-dimensional stealth acoustic material, namely a material that suppresses the acoustic scattering for a given set of incident wave vectors. The material consists of multiple scatterers, rigid diaphragms, located in an air-filled acoustic waveguide. The position of the scatterers has been chosen such that in the Born approximation a suppression of the scattering for a broad range of frequencies is achieved and thus a broadband transparency. Experimental results are found in excellent agreement with the theory despite the presence of losses and the finite size of the material, features that are not captured in the theory. This robustness as well as the generality of the results motivates realistic potential applications for the design of transparent materials in acoustics and other fields of wave physics. es_ES
dc.description.sponsorship This work has been funded by RFI Le Mans Acoustique (Region Pays de la Loire) in the framework of the APA-MAS project, by the project HYPERMETA funded under the program Etoiles Montantes of the Region Pays de la Loire as well as by the Ministerio de Economia y Competitividad (Spain) and European Union FEDER through project FIS2015-65998-C2-2-P. V. Romero-Garcia and L. M. Garcia-Raffi acknowledge the short-term scientific mission (STSM) funded by the COST (European Cooperation in Science and Technology) Action DENORMS - CA15125. es_ES
dc.language Inglés es_ES
dc.publisher American Physical Society es_ES
dc.relation.ispartof Physical Review Applied es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Stealth material es_ES
dc.subject Scattering es_ES
dc.subject Structure factor es_ES
dc.subject Disorder es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Stealth Acoustic Materials es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1103/PhysRevApplied.11.054076 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//CA15125/EU/Designs for Noise Reducing Materials and Structures (DENORMS)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FIS2015-65998-C2-2-P/ES/ONDAS ACUSTICAS EN CRISTALES, MEDIOS ESTRUCTURADOS Y METAMATERIALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//FIS2011-29734-C02-02/ES/CONTROL DE LA DIFRACCION DEL SONIDO EN MEDIOS MODULADOS: FOCALIZACION, FILTRADO ESPACIAL Y OTROS EFECTOS DE CONFORMACION DE HACES TRAS LA TRANSMISION Y REFLEXION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Romero-García, V.; Lamothe, N.; Theocharis, G.; Richoux, O.; García-Raffi, LM. (2019). Stealth Acoustic Materials. Physical Review Applied. 11(5):1-9. https://doi.org/10.1103/PhysRevApplied.11.054076 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1103/PhysRevApplied.11.054076 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 5 es_ES
dc.identifier.eissn 2331-7019 es_ES
dc.relation.pasarela S\389134 es_ES
dc.contributor.funder Region Pays de la Loire es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.description.references Shen, C., Xu, J., Fang, N. X., & Jing, Y. (2014). Anisotropic Complementary Acoustic Metamaterial for Canceling out Aberrating Layers. Physical Review X, 4(4). doi:10.1103/physrevx.4.041033 es_ES
dc.description.references Jiménez, N., Cox, T. J., Romero-García, V., & Groby, J.-P. (2017). Metadiffusers: Deep-subwavelength sound diffusers. Scientific Reports, 7(1). doi:10.1038/s41598-017-05710-5 es_ES
dc.description.references Shen, H., Lu, D., VanSaders, B., Kan, J. J., Xu, H., Fullerton, E. E., & Liu, Z. (2015). Anomalously Weak Scattering in Metal-Semiconductor Multilayer Hyperbolic Metamaterials. Physical Review X, 5(2). doi:10.1103/physrevx.5.021021 es_ES
dc.description.references Asadchy, V. S., Faniayeu, I. A., Ra’di, Y., Khakhomov, S. A., Semchenko, I. V., & Tretyakov, S. A. (2015). Broadband Reflectionless Metasheets: Frequency-Selective Transmission and Perfect Absorption. Physical Review X, 5(3). doi:10.1103/physrevx.5.031005 es_ES
dc.description.references Martin, P. A. (2006). Multiple Scattering. doi:10.1017/cbo9780511735110 es_ES
dc.description.references Engheta, N., & Ziolkowski, R. W. (Eds.). (2006). Metamaterials. doi:10.1002/0471784192 es_ES
dc.description.references Alù, A., & Engheta, N. (2005). Achieving transparency with plasmonic and metamaterial coatings. Physical Review E, 72(1). doi:10.1103/physreve.72.016623 es_ES
dc.description.references Chen, P.-Y., Farhat, M., Guenneau, S., Enoch, S., & Alù, A. (2011). Acoustic scattering cancellation via ultrathin pseudo-surface. Applied Physics Letters, 99(19), 191913. doi:10.1063/1.3655141 es_ES
dc.description.references Yablonovitch, E. (1987). Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, 58(20), 2059-2062. doi:10.1103/physrevlett.58.2059 es_ES
dc.description.references John, S. (1987). Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 58(23), 2486-2489. doi:10.1103/physrevlett.58.2486 es_ES
dc.description.references Sigalas, M. M., & Economou, E. N. (1992). Elastic and acoustic wave band structure. Journal of Sound and Vibration, 158(2), 377-382. doi:10.1016/0022-460x(92)90059-7 es_ES
dc.description.references Martínez-Sala, R., Sancho, J., Sánchez, J. V., Gómez, V., Llinares, J., & Meseguer, F. (1995). Sound attenuation by sculpture. Nature, 378(6554), 241-241. doi:10.1038/378241a0 es_ES
dc.description.references Deymier, P. A. (Ed.). (2013). Acoustic Metamaterials and Phononic Crystals. Springer Series in Solid-State Sciences. doi:10.1007/978-3-642-31232-8 es_ES
dc.description.references Sánchez-Pérez, J. V., Caballero, D., Mártinez-Sala, R., Rubio, C., Sánchez-Dehesa, J., Meseguer, F., … Gálvez, F. (1998). Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders. Physical Review Letters, 80(24), 5325-5328. doi:10.1103/physrevlett.80.5325 es_ES
dc.description.references Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2011). Tunable wideband bandstop acoustic filter based on two-dimensional multiphysical phenomena periodic systems. Journal of Applied Physics, 110(1), 014904. doi:10.1063/1.3599886 es_ES
dc.description.references Pérez-Arjona, I., Sánchez-Morcillo, V. J., Redondo, J., Espinosa, V., & Staliunas, K. (2007). Theoretical prediction of the nondiffractive propagation of sonic waves through periodic acoustic media. Physical Review B, 75(1). doi:10.1103/physrevb.75.014304 es_ES
dc.description.references Khelif, A., Wilm, M., Laude, V., Ballandras, S., & Djafari-Rouhani, B. (2004). Guided elastic waves along a rod defect of a two-dimensional phononic crystal. Physical Review E, 69(6). doi:10.1103/physreve.69.067601 es_ES
dc.description.references Sigalas, M. M. (1998). Defect states of acoustic waves in a two-dimensional lattice of solid cylinders. Journal of Applied Physics, 84(6), 3026-3030. doi:10.1063/1.368456 es_ES
dc.description.references Khelif, A., Choujaa, A., Djafari-Rouhani, B., Wilm, M., Ballandras, S., & Laude, V. (2003). Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal. Physical Review B, 68(21). doi:10.1103/physrevb.68.214301 es_ES
dc.description.references Romero-García, V., Sánchez-Pérez, J. V., Castiñeira-Ibáñez, S., & Garcia-Raffi, L. M. (2010). Evidences of evanescent Bloch waves in phononic crystals. Applied Physics Letters, 96(12), 124102. doi:10.1063/1.3367739 es_ES
dc.description.references Baba, T. (2008). Slow light in photonic crystals. Nature Photonics, 2(8), 465-473. doi:10.1038/nphoton.2008.146 es_ES
dc.description.references Kaya, O. A., Cicek, A., & Ulug, B. (2012). Self-collimated slow sound in sonic crystals. Journal of Physics D: Applied Physics, 45(36), 365101. doi:10.1088/0022-3727/45/36/365101 es_ES
dc.description.references Theocharis, G., Richoux, O., García, V. R., Merkel, A., & Tournat, V. (2014). Limits of slow sound propagation and transparency in lossy, locally resonant periodic structures. New Journal of Physics, 16(9), 093017. doi:10.1088/1367-2630/16/9/093017 es_ES
dc.description.references Groby, J.-P., Pommier, R., & Aurégan, Y. (2016). Use of slow sound to design perfect and broadband passive sound absorbing materials. The Journal of the Acoustical Society of America, 139(4), 1660-1671. doi:10.1121/1.4945101 es_ES
dc.description.references Wiersma, D. S. (2013). Disordered photonics. Nature Photonics, 7(3), 188-196. doi:10.1038/nphoton.2013.29 es_ES
dc.description.references Hu, H., Strybulevych, A., Page, J. H., Skipetrov, S. E., & van Tiggelen, B. A. (2008). Localization of ultrasound in a three-dimensional elastic network. Nature Physics, 4(12), 945-948. doi:10.1038/nphys1101 es_ES
dc.description.references Sperling, T., Bührer, W., Aegerter, C. M., & Maret, G. (2012). Direct determination of the transition to localization of light in three dimensions. Nature Photonics, 7(1), 48-52. doi:10.1038/nphoton.2012.313 es_ES
dc.description.references Fan, Y., Percus, J. K., Stillinger, D. K., & Stillinger, F. H. (1991). Constraints on collective density variables: One dimension. Physical Review A, 44(4), 2394-2402. doi:10.1103/physreva.44.2394 es_ES
dc.description.references Kuhl, U., Izrailev, F. M., Krokhin, A. A., & Stöckmann, H.-J. (2000). Experimental observation of the mobility edge in a waveguide with correlated disorder. Applied Physics Letters, 77(5), 633-635. doi:10.1063/1.127068 es_ES
dc.description.references Torquato, S. (2002). Random Heterogeneous Materials. Interdisciplinary Applied Mathematics. doi:10.1007/978-1-4757-6355-3 es_ES
dc.description.references Uche, O. U., Stillinger, F. H., & Torquato, S. (2004). Constraints on collective density variables: Two dimensions. Physical Review E, 70(4). doi:10.1103/physreve.70.046122 es_ES
dc.description.references Kuhl, U., Izrailev, F. M., & Krokhin, A. A. (2008). Enhancement of Localization in One-Dimensional Random Potentials with Long-Range Correlations. Physical Review Letters, 100(12). doi:10.1103/physrevlett.100.126402 es_ES
dc.description.references Batten, R. D., Stillinger, F. H., & Torquato, S. (2008). Classical disordered ground states: Super-ideal gases and stealth and equi-luminous materials. Journal of Applied Physics, 104(3), 033504. doi:10.1063/1.2961314 es_ES
dc.description.references Florescu, M., Torquato, S., & Steinhardt, P. J. (2009). Designer disordered materials with large, complete photonic band gaps. Proceedings of the National Academy of Sciences, 106(49), 20658-20663. doi:10.1073/pnas.0907744106 es_ES
dc.description.references Dietz, O., Kuhl, U., Hernández-Herrejón, J. C., & Tessieri, L. (2012). Transmission in waveguides with compositional and structural disorder: experimental effects of disorder cross-correlations. New Journal of Physics, 14(1), 013048. doi:10.1088/1367-2630/14/1/013048 es_ES
dc.description.references Man, W., Florescu, M., Williamson, E. P., He, Y., Hashemizad, S. R., Leung, B. Y. C., … Steinhardt, P. J. (2013). Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids. Proceedings of the National Academy of Sciences, 110(40), 15886-15891. doi:10.1073/pnas.1307879110 es_ES
dc.description.references Man, W., Florescu, M., Matsuyama, K., Yadak, P., Nahal, G., Hashemizad, S., … Chaikin, P. (2013). Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast. Optics Express, 21(17), 19972. doi:10.1364/oe.21.019972 es_ES
dc.description.references Torquato, S. (2016). Hyperuniformity and its generalizations. Physical Review E, 94(2). doi:10.1103/physreve.94.022122 es_ES
dc.description.references Torquato, S., Zhang, G., & Stillinger, F. H. (2015). Ensemble Theory for Stealthy Hyperuniform Disordered Ground States. Physical Review X, 5(2). doi:10.1103/physrevx.5.021020 es_ES
dc.description.references Leseur, O., Pierrat, R., & Carminati, R. (2016). High-density hyperuniform materials can be transparent. Optica, 3(7), 763. doi:10.1364/optica.3.000763 es_ES
dc.description.references Gkantzounis, G., Amoah, T., & Florescu, M. (2017). Hyperuniform disordered phononic structures. Physical Review B, 95(9). doi:10.1103/physrevb.95.094120 es_ES
dc.description.references Torquato, S., & Stillinger, F. H. (2003). Local density fluctuations, hyperuniformity, and order metrics. Physical Review E, 68(4). doi:10.1103/physreve.68.041113 es_ES
dc.description.references Song, B. H., & Bolton, J. S. (2000). A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials. The Journal of the Acoustical Society of America, 107(3), 1131-1152. doi:10.1121/1.428404 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem