- -

An EWMA control chart for the multivariate coefficient of variation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An EWMA control chart for the multivariate coefficient of variation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Giner-Bosch, Vicent es_ES
dc.contributor.author Tran, Kim Phuc es_ES
dc.contributor.author Castagliola, Philippe es_ES
dc.contributor.author Khoo, Michael Boon Chong es_ES
dc.date.accessioned 2021-02-02T04:32:53Z
dc.date.available 2021-02-02T04:32:53Z
dc.date.issued 2019-10 es_ES
dc.identifier.issn 0748-8017 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160433
dc.description This is the peer reviewed version of the following article: Giner-Bosch, V, Tran, KP, Castagliola, P, Khoo, MBC. An EWMA control chart for the multivariate coefficient of variation. Qual Reliab Engng Int. 2019; 35: 1515-1541, which has been published in final form at https://doi.org/10.1002/qre.2459. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. es_ES
dc.description.abstract [EN] Monitoring the multivariate coefficient of variation over time is a natural choice when the focus is on stabilising the relative variability of a multivariate process, as is the case in a significant number of real situations in engineering, health sciences, and finance, to name but a few areas. However, not many tools are available to practitioners with this aim. This paper introduces a new control chart to monitor the multivariate coefficient of variation through an exponentially weighted moving average (EWMA) scheme. Concrete methodologies to calculate the limits and evaluate the performance of the chart proposed and determine the optimal values of the chart's parameters are derived based on a theoretical study of the statistic being monitored. Computational experiments reveal that our proposal clearly outperforms existing alternatives, in terms of the average run length to detect an out-of-control state. A numerical example is included to show the efficiency of our chart when operating in practice. es_ES
dc.description.sponsorship Generalitat Valenciana, Grant/Award Number: BEST/2017/033 and GV/2016/004; Ministerio de Economia y Competitividad, Grant/Award Number: MTM2013-45381-P es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Quality and Reliability Engineering International es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Average run length es_ES
dc.subject Doubly noncentral F distribution es_ES
dc.subject EWMA es_ES
dc.subject Multivariate coefficient of variation es_ES
dc.subject Nelder-Mead method es_ES
dc.subject Trimmed mean es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title An EWMA control chart for the multivariate coefficient of variation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/qre.2459 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//BEST%2F2017%2F033/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2013-45381-P/ES/DIFERENCIAS DE LONGEVIDAD EN LA UNION EUROPEA: APLICACION DE NUEVOS METODOS PARA SU EVALUACION Y ANALISIS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2016%2F004/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Giner-Bosch, V.; Tran, KP.; Castagliola, P.; Khoo, MBC. (2019). An EWMA control chart for the multivariate coefficient of variation. Quality and Reliability Engineering International. 35(6):1515-1541. https://doi.org/10.1002/qre.2459 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/qre.2459 es_ES
dc.description.upvformatpinicio 1515 es_ES
dc.description.upvformatpfin 1541 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 35 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\391058 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Kang, C. W., Lee, M. S., Seong, Y. J., & Hawkins, D. M. (2007). A Control Chart for the Coefficient of Variation. Journal of Quality Technology, 39(2), 151-158. doi:10.1080/00224065.2007.11917682 es_ES
dc.description.references Amdouni, A., Castagliola, P., Taleb, H., & Celano, G. (2015). Monitoring the coefficient of variation using a variable sample size control chart in short production runs. The International Journal of Advanced Manufacturing Technology, 81(1-4), 1-14. doi:10.1007/s00170-015-7084-4 es_ES
dc.description.references Amdouni, A., Castagliola, P., Taleb, H., & Celano, G. (2017). A variable sampling interval Shewhart control chart for monitoring the coefficient of variation in short production runs. International Journal of Production Research, 55(19), 5521-5536. doi:10.1080/00207543.2017.1285076 es_ES
dc.description.references Yeong, W. C., Khoo, M. B. C., Tham, L. K., Teoh, W. L., & Rahim, M. A. (2017). Monitoring the Coefficient of Variation Using a Variable Sampling Interval EWMA Chart. Journal of Quality Technology, 49(4), 380-401. doi:10.1080/00224065.2017.11918004 es_ES
dc.description.references Teoh, W. L., Khoo, M. B. C., Castagliola, P., Yeong, W. C., & Teh, S. Y. (2017). Run-sum control charts for monitoring the coefficient of variation. European Journal of Operational Research, 257(1), 144-158. doi:10.1016/j.ejor.2016.08.067 es_ES
dc.description.references Sharpe, W. F. (1994). The Sharpe Ratio. The Journal of Portfolio Management, 21(1), 49-58. doi:10.3905/jpm.1994.409501 es_ES
dc.description.references Van Valen, L. (1974). Multivariate structural statistics in natural history. Journal of Theoretical Biology, 45(1), 235-247. doi:10.1016/0022-5193(74)90053-8 es_ES
dc.description.references Albert, A., & Zhang, L. (2010). A novel definition of the multivariate coefficient of variation. Biometrical Journal, 52(5), 667-675. doi:10.1002/bimj.201000030 es_ES
dc.description.references Aerts, S., Haesbroeck, G., & Ruwet, C. (2015). Multivariate coefficients of variation: Comparison and influence functions. Journal of Multivariate Analysis, 142, 183-198. doi:10.1016/j.jmva.2015.08.006 es_ES
dc.description.references Bennett, B. M. (1977). On multivariate coefficients of variation. Statistische Hefte, 18(2), 123-128. doi:10.1007/bf02932744 es_ES
dc.description.references Underhill, L. G. (1990). The coefficient of variation biplot. Journal of Classification, 7(2), 241-256. doi:10.1007/bf01908718 es_ES
dc.description.references Boik, R. J., & Shirvani, A. (2009). Principal components on coefficient of variation matrices. Statistical Methodology, 6(1), 21-46. doi:10.1016/j.stamet.2008.02.006 es_ES
dc.description.references MacGregor, J. F., & Kourti, T. (1995). Statistical process control of multivariate processes. Control Engineering Practice, 3(3), 403-414. doi:10.1016/0967-0661(95)00014-l es_ES
dc.description.references Bersimis, S., Psarakis, S., & Panaretos, J. (2007). Multivariate statistical process control charts: an overview. Quality and Reliability Engineering International, 23(5), 517-543. doi:10.1002/qre.829 es_ES
dc.description.references Yeong, W. C., Khoo, M. B. C., Teoh, W. L., & Castagliola, P. (2015). A Control Chart for the Multivariate Coefficient of Variation. Quality and Reliability Engineering International, 32(3), 1213-1225. doi:10.1002/qre.1828 es_ES
dc.description.references Lim, A. J. X., Khoo, M. B. C., Teoh, W. L., & Haq, A. (2017). Run sum chart for monitoring multivariate coefficient of variation. Computers & Industrial Engineering, 109, 84-95. doi:10.1016/j.cie.2017.04.023 es_ES
dc.description.references Roberts, S. W. (1966). A Comparison of Some Control Chart Procedures. Technometrics, 8(3), 411-430. doi:10.1080/00401706.1966.10490374 es_ES
dc.description.references Roberts, S. W. (1959). Control Chart Tests Based on Geometric Moving Averages. Technometrics, 1(3), 239-250. doi:10.1080/00401706.1959.10489860 es_ES
dc.description.references Lucas, J. M., & Saccucci, M. S. (1990). Exponentially Weighted Moving Average Control Schemes: Properties and Enhancements. Technometrics, 32(1), 1-12. doi:10.1080/00401706.1990.10484583 es_ES
dc.description.references Wijsman, R. A. (1957). Random Orthogonal Transformations and their use in Some Classical Distribution Problems in Multivariate Analysis. The Annals of Mathematical Statistics, 28(2), 415-423. doi:10.1214/aoms/1177706969 es_ES
dc.description.references The general sampling distribution of the multiple correlation coefficient. (1928). Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 121(788), 654-673. doi:10.1098/rspa.1928.0224 es_ES
dc.description.references Paolella, M. S. (2007). Intermediate Probability. doi:10.1002/9780470035061 es_ES
dc.description.references WalckC.Handbook on statistical distributions for experimentalists. Tech. Rep. SUFPFY/96‐01 Stockholm   Particle Physics Group Fysikum University of Stockholm;2007. http://inspirehep.net/record/1389910 es_ES
dc.description.references BROOK, D., & EVANS, D. A. (1972). An approach to the probability distribution of cusum run length. Biometrika, 59(3), 539-549. doi:10.1093/biomet/59.3.539 es_ES
dc.description.references Castagliola, P., Celano, G., & Psarakis, S. (2011). Monitoring the Coefficient of Variation Using EWMA Charts. Journal of Quality Technology, 43(3), 249-265. doi:10.1080/00224065.2011.11917861 es_ES
dc.description.references Vining, G. (2009). Technical Advice: Phase I and Phase II Control Charts. Quality Engineering, 21(4), 478-479. doi:10.1080/08982110903185736 es_ES
dc.description.references Scilab Enterprises: Scilab: Free and open source software for numerical computation Version 6.0.0.http://www.scilab.org;2017. es_ES
dc.description.references Nelder, J. A., & Mead, R. (1965). A Simplex Method for Function Minimization. The Computer Journal, 7(4), 308-313. doi:10.1093/comjnl/7.4.308 es_ES
dc.description.references PAGE, E. S. (1954). CONTINUOUS INSPECTION SCHEMES. Biometrika, 41(1-2), 100-115. doi:10.1093/biomet/41.1-2.100 es_ES
dc.description.references Über die hypergeometrische Reihe . (1836). Journal für die reine und angewandte Mathematik (Crelles Journal), 1836(15), 39-83. doi:10.1515/crll.1836.15.39 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem