- -

Fine-grained bit-flip protection for relaxation methods

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Fine-grained bit-flip protection for relaxation methods

Show full item record

Anzt, H.; Dongarra, J.; Quintana Ortí, ES. (2019). Fine-grained bit-flip protection for relaxation methods. Journal of Computational Science. 36:1-11. https://doi.org/10.1016/j.jocs.2016.11.013

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160574

Files in this item

Item Metadata

Title: Fine-grained bit-flip protection for relaxation methods
Author: Anzt, Hartwig Dongarra, Jack Quintana Ortí, Enrique Salvador
UPV Unit: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Issued date:
Abstract:
[EN] Resilience is considered a challenging under-addressed issue that the high performance computing community (HPC) will have to face in order to produce reliable Exascale systems by the beginning of the next decade. As ...[+]
Subjects: Sparse linear systems , Iterative solvers , Jacobi method , Fault tolerance , Bit flips , High performance computing
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Journal of Computational Science. (issn: 1877-7503 )
DOI: 10.1016/j.jocs.2016.11.013
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.jocs.2016.11.013
Project ID:
info:eu-repo/grantAgreement/MINECO//TIN2014-53495-R/ES/COMPUTACION HETEROGENEA DE BAJO CONSUMO/
info:eu-repo/grantAgreement/DOE//DE-SC-0010042/
Thanks:
This material is based upon work supported in part by the U.S. Department of Energy (Award Number DE-SC-0010042) and NVIDIA. E. S. Quintana-Orti was supported by project CICYT TIN2014-53495-R of MINECO and FEDER.
Type: Artículo

References

Chow, E., & Patel, A. (2015). Fine-Grained Parallel Incomplete LU Factorization. SIAM Journal on Scientific Computing, 37(2), C169-C193. doi:10.1137/140968896

Karpuzcu, U. R., Kim, N. S., & Torrellas, J. (2013). Coping with Parametric Variation at Near-Threshold Voltages. IEEE Micro, 33(4), 6-14. doi:10.1109/mm.2013.71

Bronevetsky, G., & de Supinski, B. (2008). Soft error vulnerability of iterative linear algebra methods. Proceedings of the 22nd annual international conference on Supercomputing - ICS ’08. doi:10.1145/1375527.1375552 [+]
Chow, E., & Patel, A. (2015). Fine-Grained Parallel Incomplete LU Factorization. SIAM Journal on Scientific Computing, 37(2), C169-C193. doi:10.1137/140968896

Karpuzcu, U. R., Kim, N. S., & Torrellas, J. (2013). Coping with Parametric Variation at Near-Threshold Voltages. IEEE Micro, 33(4), 6-14. doi:10.1109/mm.2013.71

Bronevetsky, G., & de Supinski, B. (2008). Soft error vulnerability of iterative linear algebra methods. Proceedings of the 22nd annual international conference on Supercomputing - ICS ’08. doi:10.1145/1375527.1375552

Sao, P., & Vuduc, R. (2013). Self-stabilizing iterative solvers. Proceedings of the Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems - ScalA ’13. doi:10.1145/2530268.2530272

Calhoun, J., Snir, M., Olson, L., & Garzaran, M. (2015). Understanding the Propagation of Error Due to a Silent Data Corruption in a Sparse Matrix Vector Multiply. 2015 IEEE International Conference on Cluster Computing. doi:10.1109/cluster.2015.101

Chazan, D., & Miranker, W. (1969). Chaotic relaxation. Linear Algebra and its Applications, 2(2), 199-222. doi:10.1016/0024-3795(69)90028-7

Frommer, A., & Szyld, D. B. (2000). On asynchronous iterations. Journal of Computational and Applied Mathematics, 123(1-2), 201-216. doi:10.1016/s0377-0427(00)00409-x

Duff, I. S., & Meurant, G. A. (1989). The effect of ordering on preconditioned conjugate gradients. BIT, 29(4), 635-657. doi:10.1007/bf01932738

Aliaga, J. I., Barreda, M., Dolz, M. F., Martín, A. F., Mayo, R., & Quintana-Ortí, E. S. (2014). Assessing the impact of the CPU power-saving modes on the task-parallel solution of sparse linear systems. Cluster Computing, 17(4), 1335-1348. doi:10.1007/s10586-014-0402-z

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record