Mostrar el registro sencillo del ítem
dc.contributor.author | FERRI PASCUAL, JOSUÉ | es_ES |
dc.contributor.author | Llinares Llopis, Raúl | es_ES |
dc.contributor.author | MORENO CANTON, JORGE | es_ES |
dc.contributor.author | Ibáñez Civera, Francisco Javier | es_ES |
dc.contributor.author | Garcia-Breijo, Eduardo | es_ES |
dc.date.accessioned | 2021-02-03T04:32:33Z | |
dc.date.available | 2021-02-03T04:32:33Z | |
dc.date.issued | 2019-11-20 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160575 | |
dc.description.abstract | [EN] Research has developed various solutions in order for computers to recognize hand gestures in the context of human machine interface (HMI). The design of a successful hand gesture recognition system must address functionality and usability. The gesture recognition market has evolved from touchpads to touchless sensors, which do not need direct contact. Their application in textiles ranges from the field of medical environments to smart home applications and the automotive industry. In this paper, a textile capacitive touchless sensor has been developed by using screen-printing technology. Two different designs were developed to obtain the best configuration, obtaining good results in both cases. Finally, as a real application, a complete solution of the sensor with wireless communications is presented to be used as an interface for a mobile phone. | es_ES |
dc.description.sponsorship | The work presented is funded by the Conselleria d'Economia Sostenible, Sectors Productius i Treball, through IVACE (Instituto Valenciano de Competitividad Empresarial) and cofounded by ERDF funding from the EU. Application No.: IMAMCI/2019/1. This work was also supported by the Spanish Government/FEDER funds (RTI2018-100910-B-C43) (MINECO/FEDER). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Gesture recognition | es_ES |
dc.subject | Screen-printing | es_ES |
dc.subject | 3D touchpad | es_ES |
dc.subject | E-field sensors | es_ES |
dc.subject | Wearables | es_ES |
dc.subject | Touchless | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | A Wearable Textile 3D Gesture Recognition Sensor Based on Screen-Printing Technology | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s19235068 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C43/ES/DESARROLLO DE PLATAFORMAS DE DETECCION Y TERAPEUTICAS PARA APLICACIONES BIOMEDICAS BASADAS EN DISPOSITIVOS ELECTRONICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/IVACE//IMAMCI%2F2019%2F1/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Ferri Pascual, J.; Llinares Llopis, R.; Moreno Canton, J.; Ibáñez Civera, FJ.; Garcia-Breijo, E. (2019). A Wearable Textile 3D Gesture Recognition Sensor Based on Screen-Printing Technology. Sensors. 19(23):1-32. https://doi.org/10.3390/s19235068 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/s19235068 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 32 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 23 | es_ES |
dc.identifier.eissn | 1424-8220 | es_ES |
dc.identifier.pmid | 31757058 | es_ES |
dc.identifier.pmcid | PMC6928654 | es_ES |
dc.relation.pasarela | S\401827 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Institut Valencià de Competitivitat Empresarial | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Chakraborty, B. K., Sarma, D., Bhuyan, M. K., & MacDorman, K. F. (2017). Review of constraints on vision‐based gesture recognition for human–computer interaction. IET Computer Vision, 12(1), 3-15. doi:10.1049/iet-cvi.2017.0052 | es_ES |
dc.description.references | Zhang, Z. (2012). Microsoft Kinect Sensor and Its Effect. IEEE Multimedia, 19(2), 4-10. doi:10.1109/mmul.2012.24 | es_ES |
dc.description.references | Rautaray, S. S. (2012). Real Time Hand Gesture Recognition System for Dynamic Applications. International Journal of UbiComp, 3(1), 21-31. doi:10.5121/iju.2012.3103 | es_ES |
dc.description.references | Karim, R. A., Zakaria, N. F., Zulkifley, M. A., Mustafa, M. M., Sagap, I., & Md Latar, N. H. (2013). Telepointer technology in telemedicine : a review. BioMedical Engineering OnLine, 12(1), 21. doi:10.1186/1475-925x-12-21 | es_ES |
dc.description.references | Santos, L., Carbonaro, N., Tognetti, A., González, J., de la Fuente, E., Fraile, J., & Pérez-Turiel, J. (2018). Dynamic Gesture Recognition Using a Smart Glove in Hand-Assisted Laparoscopic Surgery. Technologies, 6(1), 8. doi:10.3390/technologies6010008 | es_ES |
dc.description.references | Singh, A., Buonassisi, J., & Jain, S. (2014). Autonomous Multiple Gesture Recognition System for Disabled People. International Journal of Image, Graphics and Signal Processing, 6(2), 39-45. doi:10.5815/ijigsp.2014.02.05 | es_ES |
dc.description.references | Ohn-Bar, E., & Trivedi, M. M. (2014). Hand Gesture Recognition in Real Time for Automotive Interfaces: A Multimodal Vision-Based Approach and Evaluations. IEEE Transactions on Intelligent Transportation Systems, 15(6), 2368-2377. doi:10.1109/tits.2014.2337331 | es_ES |
dc.description.references | Khan, S. A., & Engelbrecht, A. P. (2010). A fuzzy particle swarm optimization algorithm for computer communication network topology design. Applied Intelligence, 36(1), 161-177. doi:10.1007/s10489-010-0251-2 | es_ES |
dc.description.references | Abraham, L., Urru, A., Normani, N., Wilk, M., Walsh, M., & O’Flynn, B. (2018). Hand Tracking and Gesture Recognition Using Lensless Smart Sensors. Sensors, 18(9), 2834. doi:10.3390/s18092834 | es_ES |
dc.description.references | Zeng, Q., Kuang, Z., Wu, S., & Yang, J. (2019). A Method of Ultrasonic Finger Gesture Recognition Based on the Micro-Doppler Effect. Applied Sciences, 9(11), 2314. doi:10.3390/app9112314 | es_ES |
dc.description.references | Lien, J., Gillian, N., Karagozler, M. E., Amihood, P., Schwesig, C., Olson, E., … Poupyrev, I. (2016). Soli. ACM Transactions on Graphics, 35(4), 1-19. doi:10.1145/2897824.2925953 | es_ES |
dc.description.references | Sang, Y., Shi, L., & Liu, Y. (2018). Micro Hand Gesture Recognition System Using Ultrasonic Active Sensing. IEEE Access, 6, 49339-49347. doi:10.1109/access.2018.2868268 | es_ES |
dc.description.references | Ferri, J., Lidón-Roger, J., Moreno, J., Martinez, G., & Garcia-Breijo, E. (2017). A Wearable Textile 2D Touchpad Sensor Based on Screen-Printing Technology. Materials, 10(12), 1450. doi:10.3390/ma10121450 | es_ES |
dc.description.references | Nunes, J., Castro, N., Gonçalves, S., Pereira, N., Correia, V., & Lanceros-Mendez, S. (2017). Marked Object Recognition Multitouch Screen Printed Touchpad for Interactive Applications. Sensors, 17(12), 2786. doi:10.3390/s17122786 | es_ES |
dc.description.references | Ferri, J., Perez Fuster, C., Llinares Llopis, R., Moreno, J., & Garcia‑Breijo, E. (2018). Integration of a 2D Touch Sensor with an Electroluminescent Display by Using a Screen-Printing Technology on Textile Substrate. Sensors, 18(10), 3313. doi:10.3390/s18103313 | es_ES |
dc.description.references | Cronin, S., & Doherty, G. (2018). Touchless computer interfaces in hospitals: A review. Health Informatics Journal, 25(4), 1325-1342. doi:10.1177/1460458217748342 | es_ES |
dc.description.references | Haslinger, L., Wasserthal, S., & Zagar, B. G. (2017). P3.1 - A capacitive measurement system for gesture regocnition. Proceedings Sensor 2017. doi:10.5162/sensor2017/p3.1 | es_ES |
dc.description.references | Cherenack, K., & van Pieterson, L. (2012). Smart textiles: Challenges and opportunities. Journal of Applied Physics, 112(9), 091301. doi:10.1063/1.4742728 | es_ES |