- -

Numerical mode matching for sound propagation in silencers with granular material

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Numerical mode matching for sound propagation in silencers with granular material

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sánchez Orgaz, Eva María es_ES
dc.contributor.author Denia Guzmán, Francisco David es_ES
dc.contributor.author Baeza González, Luis Miguel es_ES
dc.contributor.author Kirby, R. es_ES
dc.date.accessioned 2021-02-03T04:33:00Z
dc.date.available 2021-02-03T04:33:00Z
dc.date.issued 2019-04 es_ES
dc.identifier.issn 0377-0427 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160586
dc.description.abstract [EN] This work presents an efficient numerical approach based on the combination of the mode matching technique and the finite element method (FEM) to model the sound propagation in silencers containing granular material and to evaluate their acoustic performance through the computation of transmission loss (TL). The methodology takes into account the presence of three-dimensional (3D) waves and the corresponding higher order modes, while reducing the computational expenditure of a full 3D FEM calculation. First, the wavenumbers and transversal pressure modes associated with the silencer cross section are obtained by means of a two-dimensional FEM eigenvalue problem, which allows the consideration of arbitrary transversal geometries and material heterogeneities. The numerical approach considers the possibility of using different filling levels of granular material, giving rise to cross sections with abrupt changes of properties located not only in the usual central perforated passage, but also in the transition between air and material, that involves a significant change in porosity. After solving the eigenvalue problem, the acoustic fields (acoustic pressure and axial velocity) are coupled at geometric discontinuities between ducts through the compatibility conditions to obtain the complete solution of the wave equation and the acoustic performance (TL). The granular material is analysed as a potential alternative to the traditional dissipative silencers incorporating fibrous absorbent materials. Sound propagation in granular materials can be modelled through acoustic equivalent properties, such as complex and frequency dependent density and speed of sound. TL results computed by means of the numerical approach proposed here show good agreement with full 3D FEM calculations and experimental measurements. As expected, the numerical mode matching outperforms the computational expenditure of the full 3D FEM approach. Different configurations have been studied to determine the influence on the TL of several parameters such as the size of the material grains, the filling level of the chamber, the granular material porosity and the geometry of the silencer cross section. es_ES
dc.description.sponsorship Project supported by a 2016 BBVA Foundation, Spain Grant for Researchers and Cultural Creators. The BBVA Foundation takes no responsibility for the opinions, remarks or content included in the project and/or the results thereof, which are the sole responsibility of the authors. Support of Generalitat Valenciana (Conselleria d'Educacio, Investigacid, Cultura i Esport), Spain through project Prometeo/2016/007 is also acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Computational and Applied Mathematics es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Sound attenuation es_ES
dc.subject Silencer es_ES
dc.subject Granular material es_ES
dc.subject Numerical mode matching es_ES
dc.subject Finite element method es_ES
dc.subject Computational performance es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Numerical mode matching for sound propagation in silencers with granular material es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cam.2018.10.030 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F007/ES/Modelado numérico avanzado en ingeniería mecánica/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Sánchez Orgaz, EM.; Denia Guzmán, FD.; Baeza González, LM.; Kirby, R. (2019). Numerical mode matching for sound propagation in silencers with granular material. Journal of Computational and Applied Mathematics. 350:233-246. https://doi.org/10.1016/j.cam.2018.10.030 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cam.2018.10.030 es_ES
dc.description.upvformatpinicio 233 es_ES
dc.description.upvformatpfin 246 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 350 es_ES
dc.relation.pasarela S\370831 es_ES
dc.contributor.funder Fundación BBVA es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Denia, F. D., Sánchez-Orgaz, E. M., Martínez-Casas, J., & Kirby, R. (2015). Finite element based acoustic analysis of dissipative silencers with high temperature and thermal-induced heterogeneity. Finite Elements in Analysis and Design, 101, 46-57. doi:10.1016/j.finel.2015.04.004 es_ES
dc.description.references Astley, R. J. (1996). FE mode-matching schemes for the exterior Helmholtz problem and their relationship to the FE-DtN approach. Communications in Numerical Methods in Engineering, 12(4), 257-267. doi:10.1002/(sici)1099-0887(199604)12:4<257::aid-cnm977>3.0.co;2-8 es_ES
dc.description.references Glav, R. (1996). THE POINT-MATCHING METHOD ON DISSIPATIVE SILENCERS OF ARBITRARY CROSS-SECTION. Journal of Sound and Vibration, 189(1), 123-135. doi:10.1006/jsvi.1996.0009 es_ES
dc.description.references GLAV, R. (2000). THE TRANSFER MATRIX FOR A DISSIPATIVE SILENCER OF ARBITRARY CROSS-SECTION. Journal of Sound and Vibration, 236(4), 575-594. doi:10.1006/jsvi.2000.2994 es_ES
dc.description.references Kirby, R. (2003). Transmission loss predictions for dissipative silencers of arbitrary cross section in the presence of mean flow. The Journal of the Acoustical Society of America, 114(1), 200-209. doi:10.1121/1.1582448 es_ES
dc.description.references Kirby, R. (2009). A comparison between analytic and numerical methods for modelling automotive dissipative silencers with mean flow. Journal of Sound and Vibration, 325(3), 565-582. doi:10.1016/j.jsv.2009.03.032 es_ES
dc.description.references Fang, Z., & Ji, Z. L. (2014). Numerical Mode Matching Approach for Acoustic Attenuation Predictions of Double-Chamber Perforated Tube Dissipative Silencers with Mean Flow. Journal of Computational Acoustics, 22(02), 1450004. doi:10.1142/s0218396x14500040 es_ES
dc.description.references Yang, L., Ji, Z. L., & Wu, T. W. (2015). Transmission loss prediction of silencers by using combined boundary element method and point collocation approach. Engineering Analysis with Boundary Elements, 61, 265-273. doi:10.1016/j.enganabound.2015.08.004 es_ES
dc.description.references Denia, F. D., Sánchez-Orgaz, E. M., Baeza, L., & Kirby, R. (2016). Point collocation scheme in silencers with temperature gradient and mean flow. Journal of Computational and Applied Mathematics, 291, 127-141. doi:10.1016/j.cam.2015.02.007 es_ES
dc.description.references Kirby, R. (2008). Modeling sound propagation in acoustic waveguides using a hybrid numerical method. The Journal of the Acoustical Society of America, 124(4), 1930-1940. doi:10.1121/1.2967837 es_ES
dc.description.references Denia, F. D., Martínez-Casas, J., Carballeira, J., Nadal, E., & Fuenmayor, F. J. (2018). Computational performance of analytical methods for the acoustic modelling of automotive exhaust devices incorporating monoliths. Journal of Computational and Applied Mathematics, 330, 995-1006. doi:10.1016/j.cam.2017.03.010 es_ES
dc.description.references Allard, J. F., & Atalla, N. (2009). Propagation of Sound in Porous Media. doi:10.1002/9780470747339 es_ES
dc.description.references Li, J., Zhao, S., & Ishihara, K. (2013). Study on acoustical properties of sintered bronze porous material for transient exhaust noise of pneumatic system. Journal of Sound and Vibration, 332(11), 2721-2734. doi:10.1016/j.jsv.2012.12.031 es_ES
dc.description.references Cobo, P., & Simón, F. (2016). A comparison of impedance models for the inverse estimation of the non-acoustical parameters of granular absorbers. Applied Acoustics, 104, 119-126. doi:10.1016/j.apacoust.2015.11.006 es_ES
dc.description.references Kirby, R., & Lawrie, J. B. (2005). A point collocation approach to modelling large dissipative silencers. Journal of Sound and Vibration, 286(1-2), 313-339. doi:10.1016/j.jsv.2004.10.016 es_ES
dc.description.references Murphy, J. E., & Chin‐Bing, S. A. (1989). A finite‐element model for ocean acoustic propagation and scattering. The Journal of the Acoustical Society of America, 86(4), 1478-1483. doi:10.1121/1.398708 es_ES
dc.description.references Pierce, A. D. (1990). Wave equation for sound in fluids with unsteady inhomogeneous flow. The Journal of the Acoustical Society of America, 87(6), 2292-2299. doi:10.1121/1.399073 es_ES
dc.description.references Selamet, A., & Ji, Z. L. (1998). ACOUSTIC ATTENUATION PERFORMANCE OF CIRCULAR EXPANSION CHAMBERS WITH OFFSET INLET/OUTLET: I. ANALYTICAL APPROACH. Journal of Sound and Vibration, 213(4), 601-617. doi:10.1006/jsvi.1998.1514 es_ES
dc.description.references Selamet, A., Xu, M. B., Lee, I.-J., & Huff, N. T. (2005). Analytical approach for sound attenuation in perforated dissipative silencers with inlet/outlet extensions. The Journal of the Acoustical Society of America, 117(4), 2078-2089. doi:10.1121/1.1867884 es_ES
dc.description.references Denia, F. D., Selamet, A., Fuenmayor, F. J., & Kirby, R. (2007). Acoustic attenuation performance of perforated dissipative mufflers with empty inlet/outlet extensions. Journal of Sound and Vibration, 302(4-5), 1000-1017. doi:10.1016/j.jsv.2007.01.005 es_ES
dc.description.references Payri, F., Broatch, A., Salavert, J. M., & Moreno, D. (2010). Acoustic response of fibrous absorbent materials to impulsive transient excitations. Journal of Sound and Vibration, 329(7), 880-892. doi:10.1016/j.jsv.2009.10.015 es_ES
dc.description.references P. Glover, Petrophysics MSc Course Notes, MSc Lecture Notes, University of Leeds. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem