Mostrar el registro sencillo del ítem
dc.contributor.author | Sánchez Orgaz, Eva María | es_ES |
dc.contributor.author | Denia Guzmán, Francisco David | es_ES |
dc.contributor.author | Baeza González, Luis Miguel | es_ES |
dc.contributor.author | Kirby, R. | es_ES |
dc.date.accessioned | 2021-02-03T04:33:00Z | |
dc.date.available | 2021-02-03T04:33:00Z | |
dc.date.issued | 2019-04 | es_ES |
dc.identifier.issn | 0377-0427 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160586 | |
dc.description.abstract | [EN] This work presents an efficient numerical approach based on the combination of the mode matching technique and the finite element method (FEM) to model the sound propagation in silencers containing granular material and to evaluate their acoustic performance through the computation of transmission loss (TL). The methodology takes into account the presence of three-dimensional (3D) waves and the corresponding higher order modes, while reducing the computational expenditure of a full 3D FEM calculation. First, the wavenumbers and transversal pressure modes associated with the silencer cross section are obtained by means of a two-dimensional FEM eigenvalue problem, which allows the consideration of arbitrary transversal geometries and material heterogeneities. The numerical approach considers the possibility of using different filling levels of granular material, giving rise to cross sections with abrupt changes of properties located not only in the usual central perforated passage, but also in the transition between air and material, that involves a significant change in porosity. After solving the eigenvalue problem, the acoustic fields (acoustic pressure and axial velocity) are coupled at geometric discontinuities between ducts through the compatibility conditions to obtain the complete solution of the wave equation and the acoustic performance (TL). The granular material is analysed as a potential alternative to the traditional dissipative silencers incorporating fibrous absorbent materials. Sound propagation in granular materials can be modelled through acoustic equivalent properties, such as complex and frequency dependent density and speed of sound. TL results computed by means of the numerical approach proposed here show good agreement with full 3D FEM calculations and experimental measurements. As expected, the numerical mode matching outperforms the computational expenditure of the full 3D FEM approach. Different configurations have been studied to determine the influence on the TL of several parameters such as the size of the material grains, the filling level of the chamber, the granular material porosity and the geometry of the silencer cross section. | es_ES |
dc.description.sponsorship | Project supported by a 2016 BBVA Foundation, Spain Grant for Researchers and Cultural Creators. The BBVA Foundation takes no responsibility for the opinions, remarks or content included in the project and/or the results thereof, which are the sole responsibility of the authors. Support of Generalitat Valenciana (Conselleria d'Educacio, Investigacid, Cultura i Esport), Spain through project Prometeo/2016/007 is also acknowledged. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Computational and Applied Mathematics | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Sound attenuation | es_ES |
dc.subject | Silencer | es_ES |
dc.subject | Granular material | es_ES |
dc.subject | Numerical mode matching | es_ES |
dc.subject | Finite element method | es_ES |
dc.subject | Computational performance | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | Numerical mode matching for sound propagation in silencers with granular material | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.cam.2018.10.030 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F007/ES/Modelado numérico avanzado en ingeniería mecánica/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Sánchez Orgaz, EM.; Denia Guzmán, FD.; Baeza González, LM.; Kirby, R. (2019). Numerical mode matching for sound propagation in silencers with granular material. Journal of Computational and Applied Mathematics. 350:233-246. https://doi.org/10.1016/j.cam.2018.10.030 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.cam.2018.10.030 | es_ES |
dc.description.upvformatpinicio | 233 | es_ES |
dc.description.upvformatpfin | 246 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 350 | es_ES |
dc.relation.pasarela | S\370831 | es_ES |
dc.contributor.funder | Fundación BBVA | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Denia, F. D., Sánchez-Orgaz, E. M., Martínez-Casas, J., & Kirby, R. (2015). Finite element based acoustic analysis of dissipative silencers with high temperature and thermal-induced heterogeneity. Finite Elements in Analysis and Design, 101, 46-57. doi:10.1016/j.finel.2015.04.004 | es_ES |
dc.description.references | Astley, R. J. (1996). FE mode-matching schemes for the exterior Helmholtz problem and their relationship to the FE-DtN approach. Communications in Numerical Methods in Engineering, 12(4), 257-267. doi:10.1002/(sici)1099-0887(199604)12:4<257::aid-cnm977>3.0.co;2-8 | es_ES |
dc.description.references | Glav, R. (1996). THE POINT-MATCHING METHOD ON DISSIPATIVE SILENCERS OF ARBITRARY CROSS-SECTION. Journal of Sound and Vibration, 189(1), 123-135. doi:10.1006/jsvi.1996.0009 | es_ES |
dc.description.references | GLAV, R. (2000). THE TRANSFER MATRIX FOR A DISSIPATIVE SILENCER OF ARBITRARY CROSS-SECTION. Journal of Sound and Vibration, 236(4), 575-594. doi:10.1006/jsvi.2000.2994 | es_ES |
dc.description.references | Kirby, R. (2003). Transmission loss predictions for dissipative silencers of arbitrary cross section in the presence of mean flow. The Journal of the Acoustical Society of America, 114(1), 200-209. doi:10.1121/1.1582448 | es_ES |
dc.description.references | Kirby, R. (2009). A comparison between analytic and numerical methods for modelling automotive dissipative silencers with mean flow. Journal of Sound and Vibration, 325(3), 565-582. doi:10.1016/j.jsv.2009.03.032 | es_ES |
dc.description.references | Fang, Z., & Ji, Z. L. (2014). Numerical Mode Matching Approach for Acoustic Attenuation Predictions of Double-Chamber Perforated Tube Dissipative Silencers with Mean Flow. Journal of Computational Acoustics, 22(02), 1450004. doi:10.1142/s0218396x14500040 | es_ES |
dc.description.references | Yang, L., Ji, Z. L., & Wu, T. W. (2015). Transmission loss prediction of silencers by using combined boundary element method and point collocation approach. Engineering Analysis with Boundary Elements, 61, 265-273. doi:10.1016/j.enganabound.2015.08.004 | es_ES |
dc.description.references | Denia, F. D., Sánchez-Orgaz, E. M., Baeza, L., & Kirby, R. (2016). Point collocation scheme in silencers with temperature gradient and mean flow. Journal of Computational and Applied Mathematics, 291, 127-141. doi:10.1016/j.cam.2015.02.007 | es_ES |
dc.description.references | Kirby, R. (2008). Modeling sound propagation in acoustic waveguides using a hybrid numerical method. The Journal of the Acoustical Society of America, 124(4), 1930-1940. doi:10.1121/1.2967837 | es_ES |
dc.description.references | Denia, F. D., Martínez-Casas, J., Carballeira, J., Nadal, E., & Fuenmayor, F. J. (2018). Computational performance of analytical methods for the acoustic modelling of automotive exhaust devices incorporating monoliths. Journal of Computational and Applied Mathematics, 330, 995-1006. doi:10.1016/j.cam.2017.03.010 | es_ES |
dc.description.references | Allard, J. F., & Atalla, N. (2009). Propagation of Sound in Porous Media. doi:10.1002/9780470747339 | es_ES |
dc.description.references | Li, J., Zhao, S., & Ishihara, K. (2013). Study on acoustical properties of sintered bronze porous material for transient exhaust noise of pneumatic system. Journal of Sound and Vibration, 332(11), 2721-2734. doi:10.1016/j.jsv.2012.12.031 | es_ES |
dc.description.references | Cobo, P., & Simón, F. (2016). A comparison of impedance models for the inverse estimation of the non-acoustical parameters of granular absorbers. Applied Acoustics, 104, 119-126. doi:10.1016/j.apacoust.2015.11.006 | es_ES |
dc.description.references | Kirby, R., & Lawrie, J. B. (2005). A point collocation approach to modelling large dissipative silencers. Journal of Sound and Vibration, 286(1-2), 313-339. doi:10.1016/j.jsv.2004.10.016 | es_ES |
dc.description.references | Murphy, J. E., & Chin‐Bing, S. A. (1989). A finite‐element model for ocean acoustic propagation and scattering. The Journal of the Acoustical Society of America, 86(4), 1478-1483. doi:10.1121/1.398708 | es_ES |
dc.description.references | Pierce, A. D. (1990). Wave equation for sound in fluids with unsteady inhomogeneous flow. The Journal of the Acoustical Society of America, 87(6), 2292-2299. doi:10.1121/1.399073 | es_ES |
dc.description.references | Selamet, A., & Ji, Z. L. (1998). ACOUSTIC ATTENUATION PERFORMANCE OF CIRCULAR EXPANSION CHAMBERS WITH OFFSET INLET/OUTLET: I. ANALYTICAL APPROACH. Journal of Sound and Vibration, 213(4), 601-617. doi:10.1006/jsvi.1998.1514 | es_ES |
dc.description.references | Selamet, A., Xu, M. B., Lee, I.-J., & Huff, N. T. (2005). Analytical approach for sound attenuation in perforated dissipative silencers with inlet/outlet extensions. The Journal of the Acoustical Society of America, 117(4), 2078-2089. doi:10.1121/1.1867884 | es_ES |
dc.description.references | Denia, F. D., Selamet, A., Fuenmayor, F. J., & Kirby, R. (2007). Acoustic attenuation performance of perforated dissipative mufflers with empty inlet/outlet extensions. Journal of Sound and Vibration, 302(4-5), 1000-1017. doi:10.1016/j.jsv.2007.01.005 | es_ES |
dc.description.references | Payri, F., Broatch, A., Salavert, J. M., & Moreno, D. (2010). Acoustic response of fibrous absorbent materials to impulsive transient excitations. Journal of Sound and Vibration, 329(7), 880-892. doi:10.1016/j.jsv.2009.10.015 | es_ES |
dc.description.references | P. Glover, Petrophysics MSc Course Notes, MSc Lecture Notes, University of Leeds. | es_ES |