Mostrar el registro sencillo del ítem
dc.contributor.author | Lamirán-Palomares, José M. | es_ES |
dc.contributor.author | Baviera, Tomás | es_ES |
dc.contributor.author | Baviera-Puig, Amparo | es_ES |
dc.date.accessioned | 2021-02-03T04:33:35Z | |
dc.date.available | 2021-02-03T04:33:35Z | |
dc.date.issued | 2019-05-07 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160596 | |
dc.description.abstract | [EN] Social media platforms have had a significant impact on the public image of sports in recent years. Through the relational dynamics of the communication on these networks, many users have emerged whose opinions can exert a great deal of influence on public conversation online. This research aims to identify the influential Twitter users during the 2016 UCI Track Cycling World Championships using different variables which, in turn, represent different dimensions of influence (popularity, activity and authority). Mathematical variables of the social network analysis and variables provided by Twitter and Google are compared. First, we calculated the Spearman¿s rank correlation coefficient among all users (n = 20,175) in pairwise comparisons. Next, we performed a qualitative analysis of the top 25 influential users ranked by each variable. As a result, no single variable assessed is sufficient to identify the different kinds of influential Twitter users. The reason that some variables vary so greatly is that the components of influence are very different. Influence is a contextualised phenomenon. Having a certain type of account is not enough to make a user an influencer if they do not engage (actively or passively) in the conversation. Choosing the influencers will depend on the objectives pursued. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Social Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Popularity | es_ES |
dc.subject | Activity | es_ES |
dc.subject | Authority | es_ES |
dc.subject | Social network | es_ES |
dc.subject | Rank correlation | es_ES |
dc.subject.classification | ECONOMIA, SOCIOLOGIA Y POLITICA AGRARIA | es_ES |
dc.subject.classification | COMERCIALIZACION E INVESTIGACION DE MERCADOS | es_ES |
dc.title | Identifying Opinion Leaders on Twitter during Sporting Events: Lessons from a Case Study | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/socsci8050141 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials | es_ES |
dc.description.bibliographicCitation | Lamirán-Palomares, JM.; Baviera, T.; Baviera-Puig, A. (2019). Identifying Opinion Leaders on Twitter during Sporting Events: Lessons from a Case Study. Social Sciences. 8(5):1-18. https://doi.org/10.3390/socsci8050141 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/socsci8050141 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 18 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 5 | es_ES |
dc.identifier.eissn | 2076-0760 | es_ES |
dc.relation.pasarela | S\387206 | es_ES |
dc.description.references | Abeza, G., Pegoraro, A., Naraine, M. L., Séguin, B., O’, N., & Reilly, N. A. (2014). Activating a global sport sponsorship with social media: an analysis of TOP sponsors, Twitter, and the 2014 Olympic Games. International Journal of Sport Management and Marketing, 15(3/4), 184. doi:10.1504/ijsmm.2014.072010 | es_ES |
dc.description.references | Agre, P. E. (2002). Real-Time Politics: The Internet and the Political Process. The Information Society, 18(5), 311-331. doi:10.1080/01972240290075174 | es_ES |
dc.description.references | Anagnostopoulos, C., Parganas, P., Chadwick, S., & Fenton, A. (2018). Branding in pictures: using Instagram as a brand management tool in professional team sport organisations. European Sport Management Quarterly, 18(4), 413-438. doi:10.1080/16184742.2017.1410202 | es_ES |
dc.description.references | Barabási, A.-L., & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286(5439), 509-512. doi:10.1126/science.286.5439.509 | es_ES |
dc.description.references | Barnes, J. A., & Harary, F. (1983). Graph theory in network analysis. Social Networks, 5(2), 235-244. doi:10.1016/0378-8733(83)90026-6 | es_ES |
dc.description.references | Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. The Journal of Mathematical Sociology, 2(1), 113-120. doi:10.1080/0022250x.1972.9989806 | es_ES |
dc.description.references | Borgatti, S. P., & Everett, M. G. (2006). A Graph-theoretic perspective on centrality. Social Networks, 28(4), 466-484. doi:10.1016/j.socnet.2005.11.005 | es_ES |
dc.description.references | Bouguessa, M., & Romdhane, L. B. (2015). Identifying Authorities in Online Communities. ACM Transactions on Intelligent Systems and Technology, 6(3), 1-23. doi:10.1145/2700481 | es_ES |
dc.description.references | BROSIUS, H.-B., & WEIMANN, G. (1996). Who Sets the Agenda. Communication Research, 23(5), 561-580. doi:10.1177/009365096023005002 | es_ES |
dc.description.references | Carter, D. (2016). Hustle and Brand: The Sociotechnical Shaping of Influence. Social Media + Society, 2(3), 205630511666630. doi:10.1177/2056305116666305 | es_ES |
dc.description.references | Chew, S., Metheney, E., & Teague, T. (2017). Modelling and Simulation of the Formation of Social Networks. Social Sciences, 6(3), 79. doi:10.3390/socsci6030079 | es_ES |
dc.description.references | Clavio, G., Burch, L. M., & Frederick, E. L. (2012). Networked Fandom: Applying Systems Theory to Sport Twitter Analysis. International Journal of Sport Communication, 5(4), 522-538. doi:10.1123/ijsc.5.4.522 | es_ES |
dc.description.references | Cleland, J. (2013). Racism, Football Fans, and Online Message Boards. Journal of Sport and Social Issues, 38(5), 415-431. doi:10.1177/0193723513499922 | es_ES |
dc.description.references | Dahlgren, P. (2005). The Internet, Public Spheres, and Political Communication: Dispersion and Deliberation. Political Communication, 22(2), 147-162. doi:10.1080/10584600590933160 | es_ES |
dc.description.references | Dart, J. (2012). New Media, Professional Sport and Political Economy. Journal of Sport and Social Issues, 38(6), 528-547. doi:10.1177/0193723512467356 | es_ES |
dc.description.references | Campo-Ávila, J. del, Moreno-Vergara, N., & Trella-López, M. (2013). Bridging the Gap Between the Least and the Most Influential Twitter Users. Procedia Computer Science, 19, 437-444. doi:10.1016/j.procs.2013.06.059 | es_ES |
dc.description.references | Delia, E. B., & Armstrong, C. G. (2015). #Sponsoring the #FrenchOpen: An Examination of Social Media Buzz and Sentiment. Journal of Sport Management, 29(2), 184-199. doi:10.1123/jsm.2013-0257 | es_ES |
dc.description.references | Demir, R., & Söderman, S. (2015). Strategic sponsoring in professional sport: a review and conceptualization. European Sport Management Quarterly, 15(3), 271-300. doi:10.1080/16184742.2015.1042000 | es_ES |
dc.description.references | Dubois, E., & Gaffney, D. (2014). The Multiple Facets of Influence. American Behavioral Scientist, 58(10), 1260-1277. doi:10.1177/0002764214527088 | es_ES |
dc.description.references | Filo, K., Lock, D., & Karg, A. (2015). Sport and social media research: A review. Sport Management Review, 18(2), 166-181. doi:10.1016/j.smr.2014.11.001 | es_ES |
dc.description.references | Freberg, K., Graham, K., McGaughey, K., & Freberg, L. A. (2011). Who are the social media influencers? A study of public perceptions of personality. Public Relations Review, 37(1), 90-92. doi:10.1016/j.pubrev.2010.11.001 | es_ES |
dc.description.references | Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215-239. doi:10.1016/0378-8733(78)90021-7 | es_ES |
dc.description.references | Freeman, L. C., Borgatti, S. P., & White, D. R. (1991). Centrality in valued graphs: A measure of betweenness based on network flow. Social Networks, 13(2), 141-154. doi:10.1016/0378-8733(91)90017-n | es_ES |
dc.description.references | Gayo-Avello, D. (2013). Nepotistic relationships in Twitter and their impact on rank prestige algorithms. Information Processing & Management, 49(6), 1250-1280. doi:10.1016/j.ipm.2013.06.003 | es_ES |
dc.description.references | Gibbs, C., O’Reilly, N., & Brunette, M. (2014). Professional Team Sport and Twitter: Gratifications Sought and Obtained by Followers. International Journal of Sport Communication, 7(2), 188-213. doi:10.1123/ijsc.2014-0005 | es_ES |
dc.description.references | Hambrick, M. E. (2012). Six Degrees of Information: Using Social Network Analysis to Explore the Spread of Information Within Sport Social Networks. International Journal of Sport Communication, 5(1), 16-34. doi:10.1123/ijsc.5.1.16 | es_ES |
dc.description.references | Hambrick, M. E., & Mahoney, T. Q. (2011). «It»s incredible trust me’: exploring the role of celebrity athletes as marketers in online social networks. International Journal of Sport Management and Marketing, 10(3/4), 161. doi:10.1504/ijsmm.2011.044794 | es_ES |
dc.description.references | Hambrick, M. E., & Pegoraro, A. (2014). Social Sochi: using social network analysis to investigate electronic word-of-mouth transmitted through social media communities. International Journal of Sport Management and Marketing, 15(3/4), 120. doi:10.1504/ijsmm.2014.072005 | es_ES |
dc.description.references | Hambrick, M. E., & Sanderson, J. (2013). Gaining Primacy in the Digital Network: Using Social Network Analysis to Examine Sports Journalists’ Coverage of the Penn State Football Scandal via Twitter. Journal of Sports Media, 8(1), 1-18. doi:10.1353/jsm.2013.0003 | es_ES |
dc.description.references | Hambrick, M. E., Simmons, J. M., Greenhalgh, G. P., & Greenwell, T. C. (2010). Understanding Professional Athletes’ Use of Twitter: A Content Analysis of Athlete Tweets. International Journal of Sport Communication, 3(4), 454-471. doi:10.1123/ijsc.3.4.454 | es_ES |
dc.description.references | Hofer, M., & Aubert, V. (2013). Perceived bridging and bonding social capital on Twitter: Differentiating between followers and followees. Computers in Human Behavior, 29(6), 2134-2142. doi:10.1016/j.chb.2013.04.038 | es_ES |
dc.description.references | Hull, K., & Schmittel, A. (2014). A Fumbled Opportunity? A Case Study of Twitter’s Role in Concussion Awareness Opportunities During the Super Bowl. Journal of Sport and Social Issues, 39(1), 78-94. doi:10.1177/0193723514558928 | es_ES |
dc.description.references | Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social Media. Business Horizons, 53(1), 59-68. doi:10.1016/j.bushor.2009.09.003 | es_ES |
dc.description.references | Kassing, J. W., & Sanderson, J. (2010). Fan–Athlete Interaction and Twitter Tweeting Through the Giro: A Case Study. International Journal of Sport Communication, 3(1), 113-128. doi:10.1123/ijsc.3.1.113 | es_ES |
dc.description.references | Katz, E. (1957). The Two-Step Flow of Communication: An Up-To-Date Report on an Hypothesis. Public Opinion Quarterly, 21(1, Anniversary Issue Devoted to Twenty Years of Public Opinion Research), 61. doi:10.1086/266687 | es_ES |
dc.description.references | Khan, H. U., Daud, A., Ishfaq, U., Amjad, T., Aljohani, N., Abbasi, R. A., & Alowibdi, J. S. (2017). Modelling to identify influential bloggers in the blogosphere: A survey. Computers in Human Behavior, 68, 64-82. doi:10.1016/j.chb.2016.11.012 | es_ES |
dc.description.references | Koenig-Lewis, N., Asaad, Y., & Palmer, A. (2017). Sports events and interaction among spectators: examining antecedents of spectators’ value creation. European Sport Management Quarterly, 18(2), 193-215. doi:10.1080/16184742.2017.1361459 | es_ES |
dc.description.references | Kolyperas, D., Maglaras, G., & Sparks, L. (2018). Sport fans’ roles in value co-creation. European Sport Management Quarterly, 19(2), 201-220. doi:10.1080/16184742.2018.1505925 | es_ES |
dc.description.references | Kunkel, T., Walker, M., & Hodge, C. M. (2018). The influence of advertising appeals on consumer perceptions of athlete endorser brand image. European Sport Management Quarterly, 19(3), 373-395. doi:10.1080/16184742.2018.1530688 | es_ES |
dc.description.references | Lahuerta-Otero, E., & Cordero-Gutiérrez, R. (2016). Looking for the perfect tweet. The use of data mining techniques to find influencers on twitter. Computers in Human Behavior, 64, 575-583. doi:10.1016/j.chb.2016.07.035 | es_ES |
dc.description.references | Lewin, K. (1939). Field Theory and Experiment in Social Psychology: Concepts and Methods. American Journal of Sociology, 44(6), 868-896. doi:10.1086/218177 | es_ES |
dc.description.references | McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a Feather: Homophily in Social Networks. Annual Review of Sociology, 27(1), 415-444. doi:10.1146/annurev.soc.27.1.415 | es_ES |
dc.description.references | Meenaghan, T., McLoughlin, D., & McCormack, A. (2013). New Challenges in Sponsorship Evaluation Actors, New Media, and the Context of Praxis. Psychology & Marketing, 30(5), 444-460. doi:10.1002/mar.20618 | es_ES |
dc.description.references | Misener, L., & Mason, D. S. (2006). Creating community networks: Can sporting events offer meaningful sources of social capital? Managing Leisure, 11(1), 39-56. doi:10.1080/13606710500445676 | es_ES |
dc.description.references | Morone, F., & Makse, H. A. (2015). Influence maximization in complex networks through optimal percolation. Nature, 524(7563), 65-68. doi:10.1038/nature14604 | es_ES |
dc.description.references | Naraine, M. L., & Parent, M. M. (2016). Illuminating Centralized Users in the Social Media Ego Network of Two National Sport Organizations. Journal of Sport Management, 30(6), 689-701. doi:10.1123/jsm.2016-0067 | es_ES |
dc.description.references | Naraine, M. L., Schenk, J., & Parent, M. M. (2016). Coordination in International and Domestic Sports Events: Examining Stakeholder Network Governance. Journal of Sport Management, 30(5), 521-537. doi:10.1123/jsm.2015-0273 | es_ES |
dc.description.references | Norris, P., & Curtice, J. (2008). Getting the Message Out: A Two-Step Model of the Role of the Internet in Campaign Communication Flows During the 2005 British General Election. Journal of Information Technology & Politics, 4(4), 3-13. doi:10.1080/19331680801975359 | es_ES |
dc.description.references | Pegoraro, A. (2010). Look Who’s Talking—Athletes on Twitter: A Case Study. International Journal of Sport Communication, 3(4), 501-514. doi:10.1123/ijsc.3.4.501 | es_ES |
dc.description.references | Perić, M. (2018). Estimating the Perceived Socio-Economic Impacts of Hosting Large-Scale Sport Tourism Events. Social Sciences, 7(10), 176. doi:10.3390/socsci7100176 | es_ES |
dc.description.references | Quatman, C., & Chelladurai, P. (2008). Social Network Theory and Analysis: A Complementary Lens for Inquiry. Journal of Sport Management, 22(3), 338-360. doi:10.1123/jsm.22.3.338 | es_ES |
dc.description.references | Quatman, C., & Chelladurai, P. (2008). The Social Construction of Knowledge in the Field of Sport Management: A Social Network Perspective. Journal of Sport Management, 22(6), 651-676. doi:10.1123/jsm.22.6.651 | es_ES |
dc.description.references | Riquelme, F., & González-Cantergiani, P. (2016). Measuring user influence on Twitter: A survey. Information Processing & Management, 52(5), 949-975. doi:10.1016/j.ipm.2016.04.003 | es_ES |
dc.description.references | Santomier, J. (2008). New media, branding and global sports sponsorship. International Journal of Sports Marketing and Sponsorship, 10(1), 9-22. doi:10.1108/ijsms-10-01-2008-b005 | es_ES |
dc.description.references | Small, T. A. (2011). WHAT THE HASHTAG? Information, Communication & Society, 14(6), 872-895. doi:10.1080/1369118x.2011.554572 | es_ES |
dc.description.references | Towner, T., & Lego Munoz, C. (2016). Boomers versus Millennials: Online Media Influence on Media Performance and Candidate Evaluations. Social Sciences, 5(4), 56. doi:10.3390/socsci5040056 | es_ES |
dc.description.references | Veglis, A., & Maniou, T. A. (2018). The Mediated Data Model of Communication Flow: Big Data and Data Journalism. KOME, 6(2), 32-43. doi:10.17646/kome.2018.23 | es_ES |
dc.description.references | Wäsche, H. (2015). Interorganizational cooperation in sport tourism: A social network analysis. Sport Management Review, 18(4), 542-554. doi:10.1016/j.smr.2015.01.003 | es_ES |
dc.description.references | Wäsche, H., Dickson, G., Woll, A., & Brandes, U. (2017). Social network analysis in sport research: an emerging paradigm. European Journal for Sport and Society, 14(2), 138-165. doi:10.1080/16138171.2017.1318198 | es_ES |
dc.description.references | Yan, G., Pegoraro, A., & Watanabe, N. M. (2018). Student-Athletes’ Organization of Activism at the University of Missouri: Resource Mobilization on Twitter. Journal of Sport Management, 32(1), 24-37. doi:10.1123/jsm.2017-0031 | es_ES |
dc.description.references | Yan, G., Watanabe, N. M., Shapiro, S. L., Naraine, M. L., & Hull, K. (2018). Unfolding the Twitter scene of the 2017 UEFA Champions League Final: social media networks and power dynamics. European Sport Management Quarterly, 19(4), 419-436. doi:10.1080/16184742.2018.1517272 | es_ES |
dc.description.references | Yu, Y., & Wang, X. (2015). World Cup 2014 in the Twitter World: A big data analysis of sentiments in U.S. sports fans’ tweets. Computers in Human Behavior, 48, 392-400. doi:10.1016/j.chb.2015.01.075 | es_ES |