Mostrar el registro sencillo del ítem
dc.contributor.author | García Martínez, Antonio | es_ES |
dc.contributor.author | Monsalve-Serrano, Javier | es_ES |
dc.date.accessioned | 2021-02-03T04:34:05Z | |
dc.date.available | 2021-02-03T04:34:05Z | |
dc.date.issued | 2019-03 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160608 | |
dc.description.abstract | [EN] This work evaluates the potential of a series hybrid vehicle concept that combines low temperature combustion (LTC) and biofuels as power source. To do this, experimental data from a previous work obtained in a singlecylinder engine running under ethanol-diesel dual-fuel combustion is used. Then, vehicle systems simulations are used to estimate performance and emissions of the LTC hybrid vehicle and compare them versus conventional diesel combustion (CDC). The vehicle selected to perform the simulations is the Opel Vectra, which equips the compression ignition engine used in the experimental tests. The results from the simulations used for the analysis are firstly optimized by combining design of experiments and the Kriging fitting method. The multi-objective optimization allows to determine some characteristics and controls of the hybrid vehicle. The comparison of the estimated performance and emissions of the LTC-hybrid concept versus CDC over the worldwide harmonized light vehicles test cycle (WLTC) and real driving cycle (RDE) revealed clear benefits in terms of energy consumption, CO2 and NOx and soot emissions. In this sense, the hybrid concept enabled a reduction of the final energy consumed of 3% in the RDE cycle and 6.5% in the WLTC as compared to CDC. In terms of engine-out emissions, the CO2 was reduced around 16% versus CDC, and engine-out NOx and soot were reduced below the levels imposed by the Euro 6 regulation. As a penalty, the engine-out HC and CO emissions increased to more than double than CDC. However, based on previous experimental results, it is expected that a conventional diesel oxidation catalyst can reduce the tail-pipe HC and CO levels below the Euro 6 limits. | es_ES |
dc.description.sponsorship | The authors gratefully acknowledge General Motors Global Research & Development for providing the engine used to acquire the experimental data shown in this investigation. The authors also acknowledge FEDER and Spanish Ministerio de Economía y Competitividad for partially supporting this research through TRANCO project (TRA2017- 87694-R). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Results in Engineering | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Low temperature combustion | es_ES |
dc.subject | Series hybrid vehicle | es_ES |
dc.subject | Dual-fuel combustion | es_ES |
dc.subject | Alternative fuels | es_ES |
dc.subject | Driving cycles | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Analysis of a series hybrid vehicle concept that combines low temperature combustion and biofuels as power source | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.rineng.2019.01.001 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-87694-R/ES/REDUCCION DE CO2 EN EL TRANSPORTE MEDIANTE LA INYECCION DIRECTA DUAL-FUEL DE BIOCOMBUSTIBLES DE SEGUNDA GENERACION/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | García Martínez, A.; Monsalve-Serrano, J. (2019). Analysis of a series hybrid vehicle concept that combines low temperature combustion and biofuels as power source. Results in Engineering. 1:1-12. https://doi.org/10.1016/j.rineng.2019.01.001 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.rineng.2019.01.001 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 1 | es_ES |
dc.identifier.eissn | 2590-1230 | es_ES |
dc.relation.pasarela | S\379569 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Kalghatgi, G. (2018). Is it really the end of internal combustion engines and petroleum in transport? Applied Energy, 225, 965-974. doi:10.1016/j.apenergy.2018.05.076 | es_ES |
dc.description.references | Singh, S., & Kennedy, C. (2015). Estimating future energy use and CO2 emissions of the world’s cities. Environmental Pollution, 203, 271-278. doi:10.1016/j.envpol.2015.03.039 | es_ES |
dc.description.references | Engel, M. S., Paas, B., Schneider, C., Pfaffenbach, C., & Fels, J. (2018). Perceptual studies on air quality and sound through urban walks. Cities, 83, 173-185. doi:10.1016/j.cities.2018.06.020 | es_ES |
dc.description.references | Guanetti, J., Formentin, S., Corno, M., & Savaresi, S. M. (2017). Optimal energy management in series hybrid electric bicycles. Automatica, 81, 96-106. doi:10.1016/j.automatica.2017.03.021 | es_ES |
dc.description.references | He, H., & Guo, X. (2018). Multi-objective optimization research on the start condition for a parallel hybrid electric vehicle. Applied Energy, 227, 294-303. doi:10.1016/j.apenergy.2017.07.082 | es_ES |
dc.description.references | García Valladolid, P., Tunestål, P., Monsalve-Serrano, J., García, A., & Hyvönen, J. (2017). Impact of diesel pilot distribution on the ignition process of a dual fuel medium speed marine engine. Energy Conversion and Management, 149, 192-205. doi:10.1016/j.enconman.2017.07.023 | es_ES |
dc.description.references | Wu, H.-W., Wang, R.-H., Ou, D.-J., Chen, Y.-C., & Chen, T. (2011). Reduction of smoke and nitrogen oxides of a partial HCCI engine using premixed gasoline and ethanol with air. Applied Energy, 88(11), 3882-3890. doi:10.1016/j.apenergy.2011.03.027 | es_ES |
dc.description.references | Olmeda, P., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Experimental investigation on RCCI heat transfer in a light-duty diesel engine with different fuels: Comparison versus conventional diesel combustion. Applied Thermal Engineering, 144, 424-436. doi:10.1016/j.applthermaleng.2018.08.082 | es_ES |
dc.description.references | Yao, M., Zheng, Z., & Liu, H. (2009). Progress and recent trends in homogeneous charge compression ignition (HCCI) engines. Progress in Energy and Combustion Science, 35(5), 398-437. doi:10.1016/j.pecs.2009.05.001 | es_ES |
dc.description.references | Maurya, R. K., & Agarwal, A. K. (2011). Experimental investigation on the effect of intake air temperature and air–fuel ratio on cycle-to-cycle variations of HCCI combustion and performance parameters. Applied Energy, 88(4), 1153-1163. doi:10.1016/j.apenergy.2010.09.027 | es_ES |
dc.description.references | Singh, A. P., & Agarwal, A. K. (2012). Combustion characteristics of diesel HCCI engine: An experimental investigation using external mixture formation technique. Applied Energy, 99, 116-125. doi:10.1016/j.apenergy.2012.03.060 | es_ES |
dc.description.references | Yang, Y., Dec, J. E., Dronniou, N., & Sjöberg, M. (2011). Tailoring HCCI heat-release rates with partial fuel stratification: Comparison of two-stage and single-stage-ignition fuels. Proceedings of the Combustion Institute, 33(2), 3047-3055. doi:10.1016/j.proci.2010.06.114 | es_ES |
dc.description.references | Benajes, J., García, A., Monsalve-Serrano, J., Balloul, I., & Pradel, G. (2017). Evaluating the reactivity controlled compression ignition operating range limits in a high-compression ratio medium-duty diesel engine fueled with biodiesel and ethanol. International Journal of Engine Research, 18(1-2), 66-80. doi:10.1177/1468087416678500 | es_ES |
dc.description.references | García, A., Monsalve-Serrano, J., Rückert Roso, V., & Santos Martins, M. E. (2017). Evaluating the emissions and performance of two dual-mode RCCI combustion strategies under the World Harmonized Vehicle Cycle (WHVC). Energy Conversion and Management, 149, 263-274. doi:10.1016/j.enconman.2017.07.034 | es_ES |
dc.description.references | Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Exploring the limits of the reactivity controlled compression ignition combustion concept in a light-duty diesel engine and the influence of the direct-injected fuel properties. Energy Conversion and Management, 157, 277-287. doi:10.1016/j.enconman.2017.12.028 | es_ES |
dc.description.references | Benajes, J., García, A., Monsalve-Serrano, J., Balloul, I., & Pradel, G. (2016). An assessment of the dual-mode reactivity controlled compression ignition/conventional diesel combustion capabilities in a EURO VI medium-duty diesel engine fueled with an intermediate ethanol-gasoline blend and biodiesel. Energy Conversion and Management, 123, 381-391. doi:10.1016/j.enconman.2016.06.059 | es_ES |
dc.description.references | Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2016). Dual-Fuel Combustion for Future Clean and Efficient Compression Ignition Engines. Applied Sciences, 7(1), 36. doi:10.3390/app7010036 | es_ES |
dc.description.references | Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2017). An investigation on the particulate number and size distributions over the whole engine map from an optimized combustion strategy combining RCCI and dual-fuel diesel-gasoline. Energy Conversion and Management, 140, 98-108. doi:10.1016/j.enconman.2017.02.073 | es_ES |
dc.description.references | Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2017). Gaseous emissions and particle size distribution of dual-mode dual-fuel diesel-gasoline concept from low to full load. Applied Thermal Engineering, 120, 138-149. doi:10.1016/j.applthermaleng.2017.04.005 | es_ES |
dc.description.references | Curran S, Hanson R, Wagner R. Reactivity controlled compression ignition combustion on a multi-cylinder light-duty diesel engine. Int. J. Engine Res. 13 (3), 216-225. | es_ES |
dc.description.references | Reitz, R. D., & Duraisamy, G. (2015). Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science, 46, 12-71. doi:10.1016/j.pecs.2014.05.003 | es_ES |
dc.description.references | Olmeda, P., Martin, J., Garcia, A., Villalta, D., Warey, A., & Domenech, V. (2017). A Combination of Swirl Ratio and Injection Strategy to Increase Engine Efficiency. SAE International Journal of Engines, 10(3), 1204-1216. doi:10.4271/2017-01-0722 | es_ES |
dc.description.references | Luján, J. M., Bermúdez, V., Dolz, V., & Monsalve-Serrano, J. (2018). An assessment of the real-world driving gaseous emissions from a Euro 6 light-duty diesel vehicle using a portable emissions measurement system (PEMS). Atmospheric Environment, 174, 112-121. doi:10.1016/j.atmosenv.2017.11.056 | es_ES |
dc.description.references | OLIVER, M. A., & WEBSTER, R. (1990). Kriging: a method of interpolation for geographical information systems. International journal of geographical information systems, 4(3), 313-332. doi:10.1080/02693799008941549 | es_ES |
dc.description.references | Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Benefits of E85 versus gasoline as low reactivity fuel for an automotive diesel engine operating in reactivity controlled compression ignition combustion mode. Energy Conversion and Management, 159, 85-95. doi:10.1016/j.enconman.2018.01.015 | es_ES |
dc.description.references | García, A., Piqueras, P., Monsalve-Serrano, J., & Lago Sari, R. (2018). Sizing a conventional diesel oxidation catalyst to be used for RCCI combustion under real driving conditions. Applied Thermal Engineering, 140, 62-72. doi:10.1016/j.applthermaleng.2018.05.043 | es_ES |