- -

Analysis of a series hybrid vehicle concept that combines low temperature combustion and biofuels as power source

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analysis of a series hybrid vehicle concept that combines low temperature combustion and biofuels as power source

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García Martínez, Antonio es_ES
dc.contributor.author Monsalve-Serrano, Javier es_ES
dc.date.accessioned 2021-02-03T04:34:05Z
dc.date.available 2021-02-03T04:34:05Z
dc.date.issued 2019-03 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160608
dc.description.abstract [EN] This work evaluates the potential of a series hybrid vehicle concept that combines low temperature combustion (LTC) and biofuels as power source. To do this, experimental data from a previous work obtained in a singlecylinder engine running under ethanol-diesel dual-fuel combustion is used. Then, vehicle systems simulations are used to estimate performance and emissions of the LTC hybrid vehicle and compare them versus conventional diesel combustion (CDC). The vehicle selected to perform the simulations is the Opel Vectra, which equips the compression ignition engine used in the experimental tests. The results from the simulations used for the analysis are firstly optimized by combining design of experiments and the Kriging fitting method. The multi-objective optimization allows to determine some characteristics and controls of the hybrid vehicle. The comparison of the estimated performance and emissions of the LTC-hybrid concept versus CDC over the worldwide harmonized light vehicles test cycle (WLTC) and real driving cycle (RDE) revealed clear benefits in terms of energy consumption, CO2 and NOx and soot emissions. In this sense, the hybrid concept enabled a reduction of the final energy consumed of 3% in the RDE cycle and 6.5% in the WLTC as compared to CDC. In terms of engine-out emissions, the CO2 was reduced around 16% versus CDC, and engine-out NOx and soot were reduced below the levels imposed by the Euro 6 regulation. As a penalty, the engine-out HC and CO emissions increased to more than double than CDC. However, based on previous experimental results, it is expected that a conventional diesel oxidation catalyst can reduce the tail-pipe HC and CO levels below the Euro 6 limits. es_ES
dc.description.sponsorship The authors gratefully acknowledge General Motors Global Research & Development for providing the engine used to acquire the experimental data shown in this investigation. The authors also acknowledge FEDER and Spanish Ministerio de Economía y Competitividad for partially supporting this research through TRANCO project (TRA2017- 87694-R). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Results in Engineering es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Low temperature combustion es_ES
dc.subject Series hybrid vehicle es_ES
dc.subject Dual-fuel combustion es_ES
dc.subject Alternative fuels es_ES
dc.subject Driving cycles es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Analysis of a series hybrid vehicle concept that combines low temperature combustion and biofuels as power source es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.rineng.2019.01.001 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-87694-R/ES/REDUCCION DE CO2 EN EL TRANSPORTE MEDIANTE LA INYECCION DIRECTA DUAL-FUEL DE BIOCOMBUSTIBLES DE SEGUNDA GENERACION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation García Martínez, A.; Monsalve-Serrano, J. (2019). Analysis of a series hybrid vehicle concept that combines low temperature combustion and biofuels as power source. Results in Engineering. 1:1-12. https://doi.org/10.1016/j.rineng.2019.01.001 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.rineng.2019.01.001 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 1 es_ES
dc.identifier.eissn 2590-1230 es_ES
dc.relation.pasarela S\379569 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Kalghatgi, G. (2018). Is it really the end of internal combustion engines and petroleum in transport? Applied Energy, 225, 965-974. doi:10.1016/j.apenergy.2018.05.076 es_ES
dc.description.references Singh, S., & Kennedy, C. (2015). Estimating future energy use and CO2 emissions of the world’s cities. Environmental Pollution, 203, 271-278. doi:10.1016/j.envpol.2015.03.039 es_ES
dc.description.references Engel, M. S., Paas, B., Schneider, C., Pfaffenbach, C., & Fels, J. (2018). Perceptual studies on air quality and sound through urban walks. Cities, 83, 173-185. doi:10.1016/j.cities.2018.06.020 es_ES
dc.description.references Guanetti, J., Formentin, S., Corno, M., & Savaresi, S. M. (2017). Optimal energy management in series hybrid electric bicycles. Automatica, 81, 96-106. doi:10.1016/j.automatica.2017.03.021 es_ES
dc.description.references He, H., & Guo, X. (2018). Multi-objective optimization research on the start condition for a parallel hybrid electric vehicle. Applied Energy, 227, 294-303. doi:10.1016/j.apenergy.2017.07.082 es_ES
dc.description.references García Valladolid, P., Tunestål, P., Monsalve-Serrano, J., García, A., & Hyvönen, J. (2017). Impact of diesel pilot distribution on the ignition process of a dual fuel medium speed marine engine. Energy Conversion and Management, 149, 192-205. doi:10.1016/j.enconman.2017.07.023 es_ES
dc.description.references Wu, H.-W., Wang, R.-H., Ou, D.-J., Chen, Y.-C., & Chen, T. (2011). Reduction of smoke and nitrogen oxides of a partial HCCI engine using premixed gasoline and ethanol with air. Applied Energy, 88(11), 3882-3890. doi:10.1016/j.apenergy.2011.03.027 es_ES
dc.description.references Olmeda, P., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Experimental investigation on RCCI heat transfer in a light-duty diesel engine with different fuels: Comparison versus conventional diesel combustion. Applied Thermal Engineering, 144, 424-436. doi:10.1016/j.applthermaleng.2018.08.082 es_ES
dc.description.references Yao, M., Zheng, Z., & Liu, H. (2009). Progress and recent trends in homogeneous charge compression ignition (HCCI) engines. Progress in Energy and Combustion Science, 35(5), 398-437. doi:10.1016/j.pecs.2009.05.001 es_ES
dc.description.references Maurya, R. K., & Agarwal, A. K. (2011). Experimental investigation on the effect of intake air temperature and air–fuel ratio on cycle-to-cycle variations of HCCI combustion and performance parameters. Applied Energy, 88(4), 1153-1163. doi:10.1016/j.apenergy.2010.09.027 es_ES
dc.description.references Singh, A. P., & Agarwal, A. K. (2012). Combustion characteristics of diesel HCCI engine: An experimental investigation using external mixture formation technique. Applied Energy, 99, 116-125. doi:10.1016/j.apenergy.2012.03.060 es_ES
dc.description.references Yang, Y., Dec, J. E., Dronniou, N., & Sjöberg, M. (2011). Tailoring HCCI heat-release rates with partial fuel stratification: Comparison of two-stage and single-stage-ignition fuels. Proceedings of the Combustion Institute, 33(2), 3047-3055. doi:10.1016/j.proci.2010.06.114 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., Balloul, I., & Pradel, G. (2017). Evaluating the reactivity controlled compression ignition operating range limits in a high-compression ratio medium-duty diesel engine fueled with biodiesel and ethanol. International Journal of Engine Research, 18(1-2), 66-80. doi:10.1177/1468087416678500 es_ES
dc.description.references García, A., Monsalve-Serrano, J., Rückert Roso, V., & Santos Martins, M. E. (2017). Evaluating the emissions and performance of two dual-mode RCCI combustion strategies under the World Harmonized Vehicle Cycle (WHVC). Energy Conversion and Management, 149, 263-274. doi:10.1016/j.enconman.2017.07.034 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Exploring the limits of the reactivity controlled compression ignition combustion concept in a light-duty diesel engine and the influence of the direct-injected fuel properties. Energy Conversion and Management, 157, 277-287. doi:10.1016/j.enconman.2017.12.028 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., Balloul, I., & Pradel, G. (2016). An assessment of the dual-mode reactivity controlled compression ignition/conventional diesel combustion capabilities in a EURO VI medium-duty diesel engine fueled with an intermediate ethanol-gasoline blend and biodiesel. Energy Conversion and Management, 123, 381-391. doi:10.1016/j.enconman.2016.06.059 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2016). Dual-Fuel Combustion for Future Clean and Efficient Compression Ignition Engines. Applied Sciences, 7(1), 36. doi:10.3390/app7010036 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2017). An investigation on the particulate number and size distributions over the whole engine map from an optimized combustion strategy combining RCCI and dual-fuel diesel-gasoline. Energy Conversion and Management, 140, 98-108. doi:10.1016/j.enconman.2017.02.073 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2017). Gaseous emissions and particle size distribution of dual-mode dual-fuel diesel-gasoline concept from low to full load. Applied Thermal Engineering, 120, 138-149. doi:10.1016/j.applthermaleng.2017.04.005 es_ES
dc.description.references Curran S, Hanson R, Wagner R. Reactivity controlled compression ignition combustion on a multi-cylinder light-duty diesel engine. Int. J. Engine Res. 13 (3), 216-225. es_ES
dc.description.references Reitz, R. D., & Duraisamy, G. (2015). Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science, 46, 12-71. doi:10.1016/j.pecs.2014.05.003 es_ES
dc.description.references Olmeda, P., Martin, J., Garcia, A., Villalta, D., Warey, A., & Domenech, V. (2017). A Combination of Swirl Ratio and Injection Strategy to Increase Engine Efficiency. SAE International Journal of Engines, 10(3), 1204-1216. doi:10.4271/2017-01-0722 es_ES
dc.description.references Luján, J. M., Bermúdez, V., Dolz, V., & Monsalve-Serrano, J. (2018). An assessment of the real-world driving gaseous emissions from a Euro 6 light-duty diesel vehicle using a portable emissions measurement system (PEMS). Atmospheric Environment, 174, 112-121. doi:10.1016/j.atmosenv.2017.11.056 es_ES
dc.description.references OLIVER, M. A., & WEBSTER, R. (1990). Kriging: a method of interpolation for geographical information systems. International journal of geographical information systems, 4(3), 313-332. doi:10.1080/02693799008941549 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Benefits of E85 versus gasoline as low reactivity fuel for an automotive diesel engine operating in reactivity controlled compression ignition combustion mode. Energy Conversion and Management, 159, 85-95. doi:10.1016/j.enconman.2018.01.015 es_ES
dc.description.references García, A., Piqueras, P., Monsalve-Serrano, J., & Lago Sari, R. (2018). Sizing a conventional diesel oxidation catalyst to be used for RCCI combustion under real driving conditions. Applied Thermal Engineering, 140, 62-72. doi:10.1016/j.applthermaleng.2018.05.043 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem