- -

Stochastic Identification of Pollutant Sources in Aquifers by the Ensemble Kalman Filter

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Stochastic Identification of Pollutant Sources in Aquifers by the Ensemble Kalman Filter

Show full item record

Chen, Z. (2020). Stochastic Identification of Pollutant Sources in Aquifers by the Ensemble Kalman Filter [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/160628

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160628

Files in this item

Item Metadata

Title: Stochastic Identification of Pollutant Sources in Aquifers by the Ensemble Kalman Filter
Author: Chen, Zi
Director(s): Gómez Hernández, José Jaime Xu, Teng
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Read date / Event date:
2020-12-28
Issued date:
Abstract:
[ES] Como parte de los métodos de asimilacíon de datos, los métodos basados en conjuntos han ganado popularidad en hidrogeología dada su capacidad para manejar grandes cantidades de datos observados simultáneamente. ...[+]


[CA] Com a part dels mètodes d'assimilació de dades, els mètodes basats en conjunts han guanyat popularitat en hidrogeologia donada la seua capacitat per a manejar grans quantitats de dades observades simultàniament. ...[+]


[EN] As part of the data assimilation methods, the ensemble-based methods have gained popularity in hydrogeology given their ability to deal with huge amounts of observed data simultaneously. More recently, researchers ...[+]
Subjects: Contaminantes ambientales , Geoestadística , Filtro de Kalman , Modelo inverso , Inverse model , Kalman filter methods , Geostatistics , Non-Gaussian , Contaminant source identification , Environmental pollutants , Pollution , Water pollution
Copyrigths: Reserva de todos los derechos
DOI: 10.4995/Thesis/10251/160628
Publisher:
Universitat Politècnica de València
Project ID:
info:eu-repo/grantAgreement/MINECO//CGL2014-59841-P/ES/¿QUIEN HA SIDO?/
info:eu-repo/grantAgreement/MECD//PRX17%2F00150/
Thanks:
Thanks to the institutions that financed my studies. The support to carry out my work was received from the Spanish Ministry of Economy and Competitiveness through project CGL2014-59841-P, and from the Spanish Ministry of ...[+]
Type: Tesis doctoral

recommendations

 

This item appears in the following Collection(s)

Show full item record