- -

Influence of the synthesis method on the catalytic activity of mayenite for the oxidation of gas-phase trichloroethylene

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of the synthesis method on the catalytic activity of mayenite for the oxidation of gas-phase trichloroethylene

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Intiso, Adriano es_ES
dc.contributor.author Martínez-Triguero, Joaquín es_ES
dc.contributor.author Cucciniello, Raffaele es_ES
dc.contributor.author Rossi, Federico es_ES
dc.contributor.author Palomares Gimeno, Antonio Eduardo es_ES
dc.date.accessioned 2021-02-04T04:31:46Z
dc.date.available 2021-02-04T04:31:46Z
dc.date.issued 2019-01-23 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160674
dc.description.abstract [EN] Catalytic oxidation of trichloroethylene (TCE) in heterogeneous phase (gas-solid) is an effective strategy for the conversion of this pollutant in less harmful compounds, namely CO2, CO and HCl. In this work, we have studied the use of mayenite, a cost-effective material, as an active catalyst for the TCE conversion. In particular, we have assessed the influence of the mayenite synthesis method (hydrothermal, sol-gel and ceramic) on the reaction performance. The materials have been characterized by different techniques, such as XRD, N-2-sorption (BET), TPR, Raman spectroscopy, FESEM-EDX and TEM. The analysis of the light-off curves and product distribution, has shown that the use of the hydrothermal method for the mayenite synthesis results in the most active and selective catalyst. This has been related with a higher surface area and with a higher concentration of oxygen anions in the mayenite prepared by this method. It has been found that the presence of water in the stream do not influence the catalytic performance of the material. A mechanism for the reaction and for the partial deactivation of the catalyst has been proposed. es_ES
dc.description.sponsorship This work was supported by the grants ORSA167988 and ORSA174250 funded by the University of Salerno. AI gratefully acknowledges the Erasmus+ traineeship program. AEP and JMT thanks the Spanish Ministry of Economy and Competitiveness and the Fondo Europeo de Desarrollo Regional through MAT2015-71842-P and CTQ2015-68951-C3-1-R (MINECO/FEDER) es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Influence of the synthesis method on the catalytic activity of mayenite for the oxidation of gas-phase trichloroethylene es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-018-36708-2 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-71842-P/ES/SINTESIS Y CARACTERIZACION AVANZADA DE NUEVOS MATERIALES ZEOLITICOS Y APLICACIONES EN ADSORCION, MEDIOAMBIENTE Y EN LA CONSERVACION DE ALIMENTOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-68951-C3-1-R/ES/TRATAMIENTOS CATALITICOS AVANZADOS PARA LA VALORIZACION DE LA BIOMASA Y LA ELIMINACION DE RESIDUOS ASOCIADOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNISA//ORSA167988/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNISA//ORSA174250/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Intiso, A.; Martínez-Triguero, J.; Cucciniello, R.; Rossi, F.; Palomares Gimeno, AE. (2019). Influence of the synthesis method on the catalytic activity of mayenite for the oxidation of gas-phase trichloroethylene. Scientific Reports. 9:1-9. https://doi.org/10.1038/s41598-018-36708-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-018-36708-2 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.identifier.pmid 30674937 es_ES
dc.identifier.pmcid PMC6344594 es_ES
dc.relation.pasarela S\385677 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Università degli Studi di Salerno es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Greene, H. L., Prakash, D. S. & Athota, K. V. Combined sorbent/catalyst media for destruction of halogenated VOCs. Appl. Catal. B Environ. 7, 213–224 (1996). es_ES
dc.description.references Rossi, F. et al. Determination of the trichloroethylene diffusion coefficient in water. AIChE J. 61, 3511–3515 (2015). es_ES
dc.description.references Russell, H. H., Matthews, J. E. & Guy, W. S. TCE Removal from Contaminated Soil and Ground Water (1996). es_ES
dc.description.references IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Trichloroethylene, tetrachloroethylene, and some other chlorinated agents. IARC Monogr. Eval. Carcinog. Risks Hum. 106, 1–512 (2014). es_ES
dc.description.references Chiu, W. A. et al. Human Health Effects of Trichloroethylene: Key Findings and Scientific Issues. Environ. Health Perspect. 121, 303–311 (2012). es_ES
dc.description.references Intiso, A. et al. Enhanced solubility of trichloroethylene (TCE) by a poly-oxyethylene alcohol as green surfactant. Environ. Technol. Innov. 12, 72−79 (2018). es_ES
dc.description.references Boulding, J. R. EPA environmental engineering sourcebook. (CRC Press, 1996). es_ES
dc.description.references Huang, L. et al. Granular activated carbon adsorption process for removing trichloroethylene from groundwater. AIChE J. 57, 542–550 (2011). es_ES
dc.description.references Moccia, E. et al. Use of Zea mays L. in phytoremediation of trichloroethylene. Environ. Sci. Pollut. Res. 24, 11053–11060 (2017). es_ES
dc.description.references Costanza, J., Mulholland, J. & Pennell, K. Effects of Thermal Treatments on the Chemical Reactivity of Trichloroethylene (2007). es_ES
dc.description.references Aranzabal, A. et al. State of the art in catalytic oxidation of chlorinated volatile organic compounds. Chem. Pap. 68, 1169–1186 (2014). es_ES
dc.description.references Blanch-Raga, N. et al. Catalytic abatement of trichloroethylene over Mo and/or W-based bronzes. Appl. Catal. B Environ. 130, 36–43 (2013). es_ES
dc.description.references Blanch-Raga, N., Palomares, A. E., Martínez-Triguero, J., Fetter, G. & Bosch, P. Cu mixed oxides based on hydrotalcite-like compounds for the oxidation of trichloroethylene. Ind. Eng. Chem. Res. 52, 15772–15779 (2013). es_ES
dc.description.references Romero-Sáez, M., Divakar, D., Aranzabal, A., González-Velasco, J. R. & González-Marcos, J. A. Catalytic oxidation of trichloroethylene over Fe-ZSM-5: Influence of the preparation method on the iron species and the catalytic behavior. Appl. Catal. B Environ. 180, 210–218 (2016). es_ES
dc.description.references López-Fonseca, R., Gutiérrez-Ortiz, J. I. & González-Velasco, J. R. Catalytic combustion of chlorinated hydrocarbons over H-BETA and PdO/H-BETA zeolite catalysts. Appl. Catal. Gen. 271, 39–46 (2004). es_ES
dc.description.references Aranzabal, A., Romero-Sáez, M., Elizundia, U., González-Velasco, J. R. & González-Marcos, J. A. Deactivation of H-zeolites during catalytic oxidation of trichloroethylene. J. Catal. 296, 165–174 (2012). es_ES
dc.description.references Divakar, D. et al. Catalytic oxidation of trichloroethylene over Fe-zeolites. Catal. Today 176, 357–360 (2011). es_ES
dc.description.references Blanch-Raga, N., Palomares, A. E., Martínez-Triguero, J. & Valencia, S. Cu and Co modified beta zeolite catalysts for the trichloroethylene oxidation. Appl. Catal. B Environ. 187, 90–97 (2016). es_ES
dc.description.references Solsona, B. et al. Total Oxidation of Propane Using CeO2 and CuO-CeO2 Catalysts Prepared Using Templates of Different Nature. Catalysts 7, 96 (2017). es_ES
dc.description.references Cucciniello, R. et al. Total oxidation of trichloroethylene over mayenite (Ca12Al14O33) catalyst. Appl. Catal. B Environ. 204, 167–172 (2017). es_ES
dc.description.references Intiso, A., Cucciniello, R., Castiglione, S., Proto, A. & Rossi, F. Environmental Application of Extra-Framework Oxygen Anions in the Nano-Cages of Mayenite. In Advances in Bionanomaterials 131–139, https://doi.org/10.1007/978-3-319-62027-5_12 (Springer, Cham, 2018). es_ES
dc.description.references Yang, S. et al. Formation and Desorption of Oxygen Species in Nanoporous Crystal 12CaO·7Al2O3. Chem. Mater. 16, 104–110 (2004). es_ES
dc.description.references Lacerda, M., Irvine, J. T. S., Glasser, F. P. & West, A. R. High oxide ion conductivity in Ca12Al14O33. Nature 332, 525–526 (1988). es_ES
dc.description.references Teusner, M., De Souza, R. A., Krause, H., Ebbinghaus, S. G. & Martin, M. Oxygen transport in undoped and doped mayenite. Solid State Ion. 284, 25–27 (2016). es_ES
dc.description.references Li, C., Hirabayashi, D. & Suzuki, K. A crucial role of O2- and O22- on mayenite structure for biomass tar steam reforming over Ni/Ca12Al14O33. Appl. Catal. B Environ. 88, 351–360 (2009). es_ES
dc.description.references Li, C., Hirabayashi, D. & Suzuki, K. Synthesis of higher surface area mayenite by hydrothermal method. Mater. Res. Bull. 46, 1307–1310 (2011). es_ES
dc.description.references Ude, S. N. et al. High temperature X-ray studies of mayenite synthesized using the citrate sol–gel method. Ceram. Int. 40, 1117–1123 (2014). es_ES
dc.description.references Blanch-Raga, N. et al. The oxidation of trichloroethylene over different mixed oxides derived from hydrotalcites. Appl. Catal. B Environ. 160, 129–134 (2014). es_ES
dc.description.references Monshi, A., Foroughi, M. R. & Monshi, M. R. Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World J. Nano Sci. Eng. 02, 154 (2012). es_ES
dc.description.references Ruszak, M., Witkowski, S. & Sojka, Z. EPR and Raman investigations into anionic redox chemistry of nanoporous 12CaO·7Al2O3 interacting with O2, H2 and N2O. Res. Chem. Intermed. 33, 689–703 (2007). es_ES
dc.description.references Cucciniello, R., Proto, A., Rossi, F. & Motta, O. Mayenite based supports for atmospheric NOx sampling. Atmos. Environ. 79, 666–671 (2013). es_ES
dc.description.references Teusner, M. et al. Oxygen Diffusion in Mayenite. J. Phys. Chem. C 119, 9721–9727 (2015). es_ES
dc.description.references Schmidt, A. et al. Chlorine ion mobility in Cl-mayenite (Ca12Al14O32Cl2): An investigation combining high-temperature neutron powder diffraction, impedance spectroscopy and quantum-chemical calculations. Solid State Ion. 254, 48–58 (2014). es_ES
dc.description.references Środek, D., Dulski, M. & Galuskina, I. Raman imaging as a new approach to identification of the mayenite group minerals. Sci. Rep. 8, 13593 (2018). es_ES
dc.description.references Galuskin, E. V. et al. Mayenite supergroup, part I: Recommended nomenclature. Eur. J. Mineral. 27, 99–111 (2015). es_ES
dc.description.references Li, J. et al. Chlorine-Tolerant Ruthenium Catalyst Derived Using the Unique Anion-Exchange Properties of 12 CaO⋅7 Al2O3 for Ammonia Synthesis. Chem Cat Chem 9, 3078–3083 (2017). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem