Mostrar el registro sencillo del ítem
dc.contributor.author | Intiso, Adriano | es_ES |
dc.contributor.author | Martínez-Triguero, Joaquín | es_ES |
dc.contributor.author | Cucciniello, Raffaele | es_ES |
dc.contributor.author | Rossi, Federico | es_ES |
dc.contributor.author | Palomares Gimeno, Antonio Eduardo | es_ES |
dc.date.accessioned | 2021-02-04T04:31:46Z | |
dc.date.available | 2021-02-04T04:31:46Z | |
dc.date.issued | 2019-01-23 | es_ES |
dc.identifier.issn | 2045-2322 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160674 | |
dc.description.abstract | [EN] Catalytic oxidation of trichloroethylene (TCE) in heterogeneous phase (gas-solid) is an effective strategy for the conversion of this pollutant in less harmful compounds, namely CO2, CO and HCl. In this work, we have studied the use of mayenite, a cost-effective material, as an active catalyst for the TCE conversion. In particular, we have assessed the influence of the mayenite synthesis method (hydrothermal, sol-gel and ceramic) on the reaction performance. The materials have been characterized by different techniques, such as XRD, N-2-sorption (BET), TPR, Raman spectroscopy, FESEM-EDX and TEM. The analysis of the light-off curves and product distribution, has shown that the use of the hydrothermal method for the mayenite synthesis results in the most active and selective catalyst. This has been related with a higher surface area and with a higher concentration of oxygen anions in the mayenite prepared by this method. It has been found that the presence of water in the stream do not influence the catalytic performance of the material. A mechanism for the reaction and for the partial deactivation of the catalyst has been proposed. | es_ES |
dc.description.sponsorship | This work was supported by the grants ORSA167988 and ORSA174250 funded by the University of Salerno. AI gratefully acknowledges the Erasmus+ traineeship program. AEP and JMT thanks the Spanish Ministry of Economy and Competitiveness and the Fondo Europeo de Desarrollo Regional through MAT2015-71842-P and CTQ2015-68951-C3-1-R (MINECO/FEDER) | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Nature Publishing Group | es_ES |
dc.relation.ispartof | Scientific Reports | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | Influence of the synthesis method on the catalytic activity of mayenite for the oxidation of gas-phase trichloroethylene | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1038/s41598-018-36708-2 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2015-71842-P/ES/SINTESIS Y CARACTERIZACION AVANZADA DE NUEVOS MATERIALES ZEOLITICOS Y APLICACIONES EN ADSORCION, MEDIOAMBIENTE Y EN LA CONSERVACION DE ALIMENTOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2015-68951-C3-1-R/ES/TRATAMIENTOS CATALITICOS AVANZADOS PARA LA VALORIZACION DE LA BIOMASA Y LA ELIMINACION DE RESIDUOS ASOCIADOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UNISA//ORSA167988/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UNISA//ORSA174250/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Intiso, A.; Martínez-Triguero, J.; Cucciniello, R.; Rossi, F.; Palomares Gimeno, AE. (2019). Influence of the synthesis method on the catalytic activity of mayenite for the oxidation of gas-phase trichloroethylene. Scientific Reports. 9:1-9. https://doi.org/10.1038/s41598-018-36708-2 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1038/s41598-018-36708-2 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.identifier.pmid | 30674937 | es_ES |
dc.identifier.pmcid | PMC6344594 | es_ES |
dc.relation.pasarela | S\385677 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Università degli Studi di Salerno | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Greene, H. L., Prakash, D. S. & Athota, K. V. Combined sorbent/catalyst media for destruction of halogenated VOCs. Appl. Catal. B Environ. 7, 213–224 (1996). | es_ES |
dc.description.references | Rossi, F. et al. Determination of the trichloroethylene diffusion coefficient in water. AIChE J. 61, 3511–3515 (2015). | es_ES |
dc.description.references | Russell, H. H., Matthews, J. E. & Guy, W. S. TCE Removal from Contaminated Soil and Ground Water (1996). | es_ES |
dc.description.references | IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Trichloroethylene, tetrachloroethylene, and some other chlorinated agents. IARC Monogr. Eval. Carcinog. Risks Hum. 106, 1–512 (2014). | es_ES |
dc.description.references | Chiu, W. A. et al. Human Health Effects of Trichloroethylene: Key Findings and Scientific Issues. Environ. Health Perspect. 121, 303–311 (2012). | es_ES |
dc.description.references | Intiso, A. et al. Enhanced solubility of trichloroethylene (TCE) by a poly-oxyethylene alcohol as green surfactant. Environ. Technol. Innov. 12, 72−79 (2018). | es_ES |
dc.description.references | Boulding, J. R. EPA environmental engineering sourcebook. (CRC Press, 1996). | es_ES |
dc.description.references | Huang, L. et al. Granular activated carbon adsorption process for removing trichloroethylene from groundwater. AIChE J. 57, 542–550 (2011). | es_ES |
dc.description.references | Moccia, E. et al. Use of Zea mays L. in phytoremediation of trichloroethylene. Environ. Sci. Pollut. Res. 24, 11053–11060 (2017). | es_ES |
dc.description.references | Costanza, J., Mulholland, J. & Pennell, K. Effects of Thermal Treatments on the Chemical Reactivity of Trichloroethylene (2007). | es_ES |
dc.description.references | Aranzabal, A. et al. State of the art in catalytic oxidation of chlorinated volatile organic compounds. Chem. Pap. 68, 1169–1186 (2014). | es_ES |
dc.description.references | Blanch-Raga, N. et al. Catalytic abatement of trichloroethylene over Mo and/or W-based bronzes. Appl. Catal. B Environ. 130, 36–43 (2013). | es_ES |
dc.description.references | Blanch-Raga, N., Palomares, A. E., Martínez-Triguero, J., Fetter, G. & Bosch, P. Cu mixed oxides based on hydrotalcite-like compounds for the oxidation of trichloroethylene. Ind. Eng. Chem. Res. 52, 15772–15779 (2013). | es_ES |
dc.description.references | Romero-Sáez, M., Divakar, D., Aranzabal, A., González-Velasco, J. R. & González-Marcos, J. A. Catalytic oxidation of trichloroethylene over Fe-ZSM-5: Influence of the preparation method on the iron species and the catalytic behavior. Appl. Catal. B Environ. 180, 210–218 (2016). | es_ES |
dc.description.references | López-Fonseca, R., Gutiérrez-Ortiz, J. I. & González-Velasco, J. R. Catalytic combustion of chlorinated hydrocarbons over H-BETA and PdO/H-BETA zeolite catalysts. Appl. Catal. Gen. 271, 39–46 (2004). | es_ES |
dc.description.references | Aranzabal, A., Romero-Sáez, M., Elizundia, U., González-Velasco, J. R. & González-Marcos, J. A. Deactivation of H-zeolites during catalytic oxidation of trichloroethylene. J. Catal. 296, 165–174 (2012). | es_ES |
dc.description.references | Divakar, D. et al. Catalytic oxidation of trichloroethylene over Fe-zeolites. Catal. Today 176, 357–360 (2011). | es_ES |
dc.description.references | Blanch-Raga, N., Palomares, A. E., Martínez-Triguero, J. & Valencia, S. Cu and Co modified beta zeolite catalysts for the trichloroethylene oxidation. Appl. Catal. B Environ. 187, 90–97 (2016). | es_ES |
dc.description.references | Solsona, B. et al. Total Oxidation of Propane Using CeO2 and CuO-CeO2 Catalysts Prepared Using Templates of Different Nature. Catalysts 7, 96 (2017). | es_ES |
dc.description.references | Cucciniello, R. et al. Total oxidation of trichloroethylene over mayenite (Ca12Al14O33) catalyst. Appl. Catal. B Environ. 204, 167–172 (2017). | es_ES |
dc.description.references | Intiso, A., Cucciniello, R., Castiglione, S., Proto, A. & Rossi, F. Environmental Application of Extra-Framework Oxygen Anions in the Nano-Cages of Mayenite. In Advances in Bionanomaterials 131–139, https://doi.org/10.1007/978-3-319-62027-5_12 (Springer, Cham, 2018). | es_ES |
dc.description.references | Yang, S. et al. Formation and Desorption of Oxygen Species in Nanoporous Crystal 12CaO·7Al2O3. Chem. Mater. 16, 104–110 (2004). | es_ES |
dc.description.references | Lacerda, M., Irvine, J. T. S., Glasser, F. P. & West, A. R. High oxide ion conductivity in Ca12Al14O33. Nature 332, 525–526 (1988). | es_ES |
dc.description.references | Teusner, M., De Souza, R. A., Krause, H., Ebbinghaus, S. G. & Martin, M. Oxygen transport in undoped and doped mayenite. Solid State Ion. 284, 25–27 (2016). | es_ES |
dc.description.references | Li, C., Hirabayashi, D. & Suzuki, K. A crucial role of O2- and O22- on mayenite structure for biomass tar steam reforming over Ni/Ca12Al14O33. Appl. Catal. B Environ. 88, 351–360 (2009). | es_ES |
dc.description.references | Li, C., Hirabayashi, D. & Suzuki, K. Synthesis of higher surface area mayenite by hydrothermal method. Mater. Res. Bull. 46, 1307–1310 (2011). | es_ES |
dc.description.references | Ude, S. N. et al. High temperature X-ray studies of mayenite synthesized using the citrate sol–gel method. Ceram. Int. 40, 1117–1123 (2014). | es_ES |
dc.description.references | Blanch-Raga, N. et al. The oxidation of trichloroethylene over different mixed oxides derived from hydrotalcites. Appl. Catal. B Environ. 160, 129–134 (2014). | es_ES |
dc.description.references | Monshi, A., Foroughi, M. R. & Monshi, M. R. Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World J. Nano Sci. Eng. 02, 154 (2012). | es_ES |
dc.description.references | Ruszak, M., Witkowski, S. & Sojka, Z. EPR and Raman investigations into anionic redox chemistry of nanoporous 12CaO·7Al2O3 interacting with O2, H2 and N2O. Res. Chem. Intermed. 33, 689–703 (2007). | es_ES |
dc.description.references | Cucciniello, R., Proto, A., Rossi, F. & Motta, O. Mayenite based supports for atmospheric NOx sampling. Atmos. Environ. 79, 666–671 (2013). | es_ES |
dc.description.references | Teusner, M. et al. Oxygen Diffusion in Mayenite. J. Phys. Chem. C 119, 9721–9727 (2015). | es_ES |
dc.description.references | Schmidt, A. et al. Chlorine ion mobility in Cl-mayenite (Ca12Al14O32Cl2): An investigation combining high-temperature neutron powder diffraction, impedance spectroscopy and quantum-chemical calculations. Solid State Ion. 254, 48–58 (2014). | es_ES |
dc.description.references | Środek, D., Dulski, M. & Galuskina, I. Raman imaging as a new approach to identification of the mayenite group minerals. Sci. Rep. 8, 13593 (2018). | es_ES |
dc.description.references | Galuskin, E. V. et al. Mayenite supergroup, part I: Recommended nomenclature. Eur. J. Mineral. 27, 99–111 (2015). | es_ES |
dc.description.references | Li, J. et al. Chlorine-Tolerant Ruthenium Catalyst Derived Using the Unique Anion-Exchange Properties of 12 CaO⋅7 Al2O3 for Ammonia Synthesis. Chem Cat Chem 9, 3078–3083 (2017). | es_ES |