- -

Effects of the thermodynamic conditions on the acoustic signature of bubble nucleation in superheated liquids used in dark matter search experiments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effects of the thermodynamic conditions on the acoustic signature of bubble nucleation in superheated liquids used in dark matter search experiments

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ardid Ramírez, Miguel es_ES
dc.contributor.author Baschirotto, A. es_ES
dc.contributor.author Burgio, N. es_ES
dc.contributor.author Corcione, M. es_ES
dc.contributor.author Cretara, L. es_ES
dc.contributor.author De Matteis, L. es_ES
dc.contributor.author Felis-Enguix, Iván es_ES
dc.contributor.author Frullini, M. es_ES
dc.contributor.author Manara, L. es_ES
dc.contributor.author Quintino, A. es_ES
dc.contributor.author Santagata, A. es_ES
dc.contributor.author Spena, V.A. es_ES
dc.contributor.author Vallicelli, E.A. es_ES
dc.contributor.author Zanotti, L. es_ES
dc.date.accessioned 2021-02-04T04:32:22Z
dc.date.available 2021-02-04T04:32:22Z
dc.date.issued 2019-11 es_ES
dc.identifier.issn 1434-6044 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160689
dc.description.abstract [EN] In the framework of the search for dark matter in the form of WIMPs using superheated liquids, a study is conducted to establish a computational procedure aimed at determining how the thermodynamic conditions kept inside a particle detector affect the acoustic signal produced by bubble nucleation. It is found that the acoustic energy injected into the liquid by the growing vapour bubble increases as the liquid pressure is decreased and the superheat degree is increased, the former effect being crucial for the generation of a well-intelligible signal. A good agreement is met between the results of the present study and some experimental data available in the literature for the amplitude of the acoustic signal. Additionally, the higher loudness of the alpha-decay events compared with those arising from neutron-induced nuclear recoils is described in terms of multiple nucleations. es_ES
dc.description.sponsorship The authors are grateful to Walter Fulgione for the valuable discussions and suggestions and for his help in reviewing the manuscript. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof The European Physical Journal C es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Dynamics es_ES
dc.subject Growth es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Effects of the thermodynamic conditions on the acoustic signature of bubble nucleation in superheated liquids used in dark matter search experiments es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1140/epjc/s10052-019-7485-x es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Ardid Ramírez, M.; Baschirotto, A.; Burgio, N.; Corcione, M.; Cretara, L.; De Matteis, L.; Felis-Enguix, I.... (2019). Effects of the thermodynamic conditions on the acoustic signature of bubble nucleation in superheated liquids used in dark matter search experiments. The European Physical Journal C. 79(11):1-9. https://doi.org/10.1140/epjc/s10052-019-7485-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1140/epjc/s10052-019-7485-x es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 79 es_ES
dc.description.issue 11 es_ES
dc.relation.pasarela S\403952 es_ES
dc.description.references W.J. Bolte et al., Nucl. Instr. Meth. Phys. Res. A 577, 569–573 (2007) es_ES
dc.description.references E. Behnke et al., Astropart. Phys. 90, 85–92 (2017) es_ES
dc.description.references M. Felizardo et al., E3S Web Conf. 12, 03002 (2016) es_ES
dc.description.references E. Behnke et al., Phys. Rev. D 88, 021101 (2013) es_ES
dc.description.references C. Amole et al., Phys. Rev. Lett. 118, 251301 (2017) es_ES
dc.description.references A. Antonicci et al., Eur. Phys. J. C 77, 752 (2017) es_ES
dc.description.references D.A. Glaser, Phys. Rev. 87, 655 (1952) es_ES
dc.description.references F. Seitz, Phys. Fluids 1, 2–13 (1958) es_ES
dc.description.references E. Behnke et al., Phys. Rev. Lett. 106, 021303 (2011) es_ES
dc.description.references D.A. Glaser, D.C. Rahm, Phys. Rev. 97, 474–479 (1955) es_ES
dc.description.references Yu.N. Martynyuk, N.S. Smirnova, Sov. Phys. Acoust. 37, 376–378 (1991) es_ES
dc.description.references F. Aubin et al., New J. Phys. 10, 103017 (2008) es_ES
dc.description.references M. Felizardo et al., Nucl. Instr. Meth. Phys. Res. A 589, 72–84 (2008) es_ES
dc.description.references P.K. Mondal, B.K. Chatterjee, Phys. Lett. A 375, 237–244 (2011) es_ES
dc.description.references S. Archambault et al., New J. Phys. 13, 043006 (2011) es_ES
dc.description.references C. Amole et al., Phys. Rev. Lett. 114, 231302 (2015) es_ES
dc.description.references R. Sarkar et al., Phys. Lett. A 381, 2531–2537 (2017) es_ES
dc.description.references I.A. Pless, R.J. Plano, Rev. Sci. Instr. 27, 935–937 (1956) es_ES
dc.description.references D.V. Bugg, Progr. Nucl. Phys. 7, 2–52 (1959) es_ES
dc.description.references A. Norman, P. Spiegler, Nucl. Sci. Eng. 16, 213–217 (1963) es_ES
dc.description.references A.G. Tenner, Nucl. Instr. Meth. 22, 1–42 (1963) es_ES
dc.description.references Ch. Peyrou, In Bubble and Spark Chambers (Academic Press, New York, 1967) es_ES
dc.description.references C.R. Bell et al., Nucl. Sci. Eng. 53, 458–465 (1974) es_ES
dc.description.references G. Bruno et al., Eur. Phys. J. C 79, 183 (2019) es_ES
dc.description.references B.M. Dorofeev, V.I. Volkova, High Temp. 43, 620–627 (2005) es_ES
dc.description.references L.D. Landau, E.M. Lifshitz, Fluid Mechanics. Course of Theoretical Physics, vol 6, 2nd edn. (Butterworth-Heinemann, Kidlington, Oxford, 1987) es_ES
dc.description.references Y.Y. Sun, B.T. Chu, R.E. Apfel, J. Comp. Phys. 103, 126–140 (1992) es_ES
dc.description.references M.S. Plesset, S.A. Zwick, J. Appl. Phys. 25, 493–500 (1954) es_ES
dc.description.references L.E. Scriven, Chem. Eng. Sci. 10, 1–13 (1959) es_ES
dc.description.references H.S. Lee, H. Merte, Int. J. Heat Mass Transf. 39, 2427–2447 (1996) es_ES
dc.description.references A.J. Robinson, R.L. Judd, Int. J. Heat Mass Transf. 47, 5101–5113 (2004) es_ES
dc.description.references F. d’Errico, Rad. Prot. Dos. 84, 55–62 (1999) es_ES
dc.description.references B.B. Mikic, W.M. Rohsenow, P. Griffith, Int. J. Heat Mass Transf. 13, 657–666 (1970) es_ES
dc.description.references P.J. Linstrom, W.G. Mallard (eds.) NIST Chemistry WebBook, NIST-SRD 69 (National Institute of Standards and Technology, Gaithersburg, MD). https://doi.org/10.18434/T4D303 es_ES
dc.description.references M. Barnabé-Heider et al., Nucl. Instr. Meth. Phys. Res. A 555, 184–204 (2005) es_ES
dc.description.references D.V. Jordan et al., Appl. Rad. Isot. 63, 645–653 (2005) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem