- -

Human-computer cooperation platform for developing real-time robotic applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Human-computer cooperation platform for developing real-time robotic applications

Mostrar el registro completo del ítem

Domínguez Montagud, CP.; Martínez-Rubio, J.; Busquets Mataix, JV.; Hassan Mohamed, H. (2019). Human-computer cooperation platform for developing real-time robotic applications. The Journal of Supercomputing. 75(4):1849-1868. https://doi.org/10.1007/s11227-018-2343-4

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160754

Ficheros en el ítem

Metadatos del ítem

Título: Human-computer cooperation platform for developing real-time robotic applications
Autor: Domínguez Montagud, Carlos Pascual Martínez-Rubio, Juan-Miguel Busquets Mataix, José Vicente Hassan Mohamed, Houcine
Entidad UPV: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Fecha difusión:
Resumen:
[EN] This paper presents a human-computer cooperation platform, which permits the coordination between the user and the tool to improve the development of real-time control applications (e.g., mobile robots). These ...[+]
Palabras clave: Human-computer cooperation , Real-time systems , Mobile robots , Scheduling , Simulation tool , Graphical user interface , Object oriented programming , Schedulability analysis
Derechos de uso: Reserva de todos los derechos
Fuente:
The Journal of Supercomputing. (issn: 0920-8542 )
DOI: 10.1007/s11227-018-2343-4
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11227-018-2343-4
Tipo: Artículo

References

Dominguez C, Hassan H, Crespo A (2007) Real-time embedded architecture for pervasive robots. In: The 2007 International Conference on Intelligent Pervasive Computing (IPC 2007), pp 531–536

Audsley NC, Burns A, Davis RI, Tindell KW, Wellings AJ (1995) Fixed priority pre-emptive scheduling: an historical perspective. Real Time Syst 8(2–3):173–198

Stankovic JA, Lee I, Mok A, Rajkumar R (2005) Opportunities and obligations for physical computing systems. Computer 38(11):23–31 [+]
Dominguez C, Hassan H, Crespo A (2007) Real-time embedded architecture for pervasive robots. In: The 2007 International Conference on Intelligent Pervasive Computing (IPC 2007), pp 531–536

Audsley NC, Burns A, Davis RI, Tindell KW, Wellings AJ (1995) Fixed priority pre-emptive scheduling: an historical perspective. Real Time Syst 8(2–3):173–198

Stankovic JA, Lee I, Mok A, Rajkumar R (2005) Opportunities and obligations for physical computing systems. Computer 38(11):23–31

Zhen Z, Qixin C, Lo C, Lei Z (2009) A CORBA-based simulation and control framework for mobile robots. Robotica 27(3):459

Ferretti G, Magnani G, Porrati P, Rizzi G, Rocco P, Rusconi A (2008) Real-time simulation of a space robotic arm. In: IROS

Qadi A, Goddard S, Huang J, Farritor S (2005) A performance and schedulability analysis of an autonomous mobile robot. In: 17th Euromicro Conference on Real-Time Systems (ECRTS’05), pp 239–248

Goud GR, Sharma N, Ramamritham K, Malewar S (2006) Efficient real-time support for automotive applications: a case study. In: 12th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’06), pp 335–341

Pedreiras P, Luis A (2003) The flexible time-triggered (FTT) paradigm: an approach to QoS management in distributed real-time systems. In: Proceedings International Parallel and Distributed Processing Symposium, p 9

Li H, Sweeney J, Ramamritham K, Grupen R, Shenoy P (2003) Real-time support for mobile robotics. In: The 9th IEEE Real-Time and Embedded Technology and Applications Symposium. Proceedings, pp 10–18

Chetto H, Chetto M (1989) Some results of the earliest deadline scheduling algorithm. IEEE Trans Softw Eng 15(10):1261–1269

Liu R, Zhang X (2017) Systems of natural-language-facilitated human-robot cooperation: a review. arXiv:1701.08269v2

Tsarouchi P, Makris S, Chryssolouris G (2016) Human–robot interaction review and challenges on task planning and programming. Int J Comput Integr Manuf 29(8):916–931

Moniz A (2013) Organizational concepts and interaction between humans and robots in industrial environments. In: IEEE-RAS-IARP Joint Workshop on Technical Challenges for Dependable Robots in Human Environment, Tokyo

Mayer MP, Odenthal B, Faber M, Winkelholz C, Schlick CM (2014) Cognitive engineering of automated assembly processes. Hum Factors Ergon Manuf Serv Ind 24(3):348–368

Agostini A, Torras C, Wörgötter F (2011) Integrating task planning and interactive learning for robots to work in human environments. In: IJCAI

Kwon W, Suh I (2014) Planning of proactive behaviors for human–robot cooperative tasks under uncertainty. Knowl Based Syst 72:81–95

Chen F, Sekiyama K, Sasaki H, Huang J, Sun B, Fukuda T (2011) Assembly strategy modeling and selection for human and robot coordinated cell assembly. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 4670–4675

Gombolay M, Wilcox R, Diaz A, Yu F (2013) Towards successful coordination of human and robotic work using automated scheduling tools: an initial pilot study. In: Proceedings of Robotics: Science and Systems, Human–Robot Collaboration Workshop

Gombolay MC, Gutierrez RA, Clarke SG, Sturla GF, Shah JA (2015) Decision-making authority, team efficiency and human worker satisfaction in mixed human–robot teams. Auton Robots 39(3):293–312

Frontoni E, Mancini A, Caponetti F, Zingaretti P (2006) A framework for simulations and tests of mobile robotics tasks. In: 2006 14th Mediterranean Conference on Control and Automation, pp 1–6

I. Embarcadero Technologies, C++ Builder 10.2. https://www.embarcadero.com/

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem