Mostrar el registro sencillo del ítem
dc.contributor.author | Romaguera Bonilla, Salvador | es_ES |
dc.contributor.author | Tirado Peláez, Pedro | es_ES |
dc.date.accessioned | 2021-02-05T04:31:17Z | |
dc.date.available | 2021-02-05T04:31:17Z | |
dc.date.issued | 2019-06-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160759 | |
dc.description.abstract | [EN] We obtain quasi-metric versions of the famous Meir¿Keeler fixed point theorem from which we deduce quasi-metric generalizations of Boyd¿Wong¿s fixed point theorem. In fact, one of these generalizations provides a solution for a question recently raised in the paper ¿On the fixed point theory in bicomplete quasi-metric spaces¿, J. Nonlinear Sci. Appl. 2016, 9, 5245¿5251. We also give an application to the study of existence of solution for a type of recurrence equations associated to certain nonlinear difference equations | es_ES |
dc.description.sponsorship | Pedro Tirado acknowledges the support of the Ministerio de Ciencia, Innovación y Universidades, under grant PGC2018-095709-B-C21 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Symmetry (Basel) | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Fixed point | es_ES |
dc.subject | Quasi-metric space | es_ES |
dc.subject | Meir-Keeler | es_ES |
dc.subject | Boyd-Wong | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | The Meir-Keeler Fixed Point Theorem for Quasi-Metric Spaces and Some Consequences | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/sym11060741 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095709-B-C21/ES/METRICAS DIFUSAS Y OPERADORES DE INDISTINGUIBILIDAD: APLICACIONES EN ROBOTICA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Romaguera Bonilla, S.; Tirado Peláez, P. (2019). The Meir-Keeler Fixed Point Theorem for Quasi-Metric Spaces and Some Consequences. Symmetry (Basel). 11(6):1-10. https://doi.org/10.3390/sym11060741 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/sym11060741 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 6 | es_ES |
dc.identifier.eissn | 2073-8994 | es_ES |
dc.relation.pasarela | S\397761 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Alegre, C., Dağ, H., Romaguera, S., & Tirado, P. (2016). On the fixed point theory in bicomplete quasi-metric spaces. Journal of Nonlinear Sciences and Applications, 09(08), 5245-5251. doi:10.22436/jnsa.009.08.10 | es_ES |
dc.description.references | Boyd, D. W., & Wong, J. S. W. (1969). On nonlinear contractions. Proceedings of the American Mathematical Society, 20(2), 458-458. doi:10.1090/s0002-9939-1969-0239559-9 | es_ES |
dc.description.references | Meir, A., & Keeler, E. (1969). A theorem on contraction mappings. Journal of Mathematical Analysis and Applications, 28(2), 326-329. doi:10.1016/0022-247x(69)90031-6 | es_ES |
dc.description.references | Aydi, H., & Karapinar, E. (2012). A Meir-Keeler common type fixed point theorem on partial metric spaces. Fixed Point Theory and Applications, 2012(1). doi:10.1186/1687-1812-2012-26 | es_ES |
dc.description.references | Chen, C.-M. (2012). Fixed point theory for the cyclic weaker Meir-Keeler function in complete metric spaces. Fixed Point Theory and Applications, 2012(1). doi:10.1186/1687-1812-2012-17 | es_ES |
dc.description.references | Chen, C.-M. (2012). Fixed point theorems for cyclic Meir-Keeler type mappings in complete metric spaces. Fixed Point Theory and Applications, 2012(1). doi:10.1186/1687-1812-2012-41 | es_ES |
dc.description.references | Chen, C.-M., & Karapınar, E. (2013). Fixed point results for the α-Meir-Keeler contraction on partial Hausdorff metric spaces. Journal of Inequalities and Applications, 2013(1). doi:10.1186/1029-242x-2013-410 | es_ES |
dc.description.references | Choban, M. M., & Berinde, V. (2017). Multiple fixed point theorems for contractive and Meir-Keeler type mappings defined on partially ordered spaces with a distance. Applied General Topology, 18(2), 317. doi:10.4995/agt.2017.7067 | es_ES |
dc.description.references | Di Bari, C., Suzuki, T., & Vetro, C. (2008). Best proximity points for cyclic Meir–Keeler contractions. Nonlinear Analysis: Theory, Methods & Applications, 69(11), 3790-3794. doi:10.1016/j.na.2007.10.014 | es_ES |
dc.description.references | Jachymski, J. (1995). Equivalent Conditions and the Meir-Keeler Type Theorems. Journal of Mathematical Analysis and Applications, 194(1), 293-303. doi:10.1006/jmaa.1995.1299 | es_ES |
dc.description.references | Karapinar, E., Czerwik, S., & Aydi, H. (2018). (α,ψ)-Meir-Keeler Contraction Mappings in Generalized b-Metric Spaces. Journal of Function Spaces, 2018, 1-4. doi:10.1155/2018/3264620 | es_ES |
dc.description.references | Mustafa, Z., Aydi, H., & Karapınar, E. (2013). Generalized Meir–Keeler type contractions on G-metric spaces. Applied Mathematics and Computation, 219(21), 10441-10447. doi:10.1016/j.amc.2013.04.032 | es_ES |
dc.description.references | Nashine, H. K., & Romaguera, S. (2013). Fixed point theorems for cyclic self-maps involving weaker Meir-Keeler functions in complete metric spaces and applications. Fixed Point Theory and Applications, 2013(1). doi:10.1186/1687-1812-2013-224 | es_ES |
dc.description.references | Park, S., & Bae, J. S. (1981). Extensions of a fixed point theorem of Meir and Keeler. Arkiv för Matematik, 19(1-2), 223-228. doi:10.1007/bf02384479 | es_ES |
dc.description.references | Piątek, B. (2011). On cyclic Meir–Keeler contractions in metric spaces. Nonlinear Analysis: Theory, Methods & Applications, 74(1), 35-40. doi:10.1016/j.na.2010.08.010 | es_ES |
dc.description.references | Rhoades, B. ., Park, S., & Moon, K. B. (1990). On generalizations of the Meir-Keeler type contraction maps. Journal of Mathematical Analysis and Applications, 146(2), 482-494. doi:10.1016/0022-247x(90)90318-a | es_ES |
dc.description.references | Samet, B. (2010). Coupled fixed point theorems for a generalized Meir–Keeler contraction in partially ordered metric spaces. Nonlinear Analysis: Theory, Methods & Applications, 72(12), 4508-4517. doi:10.1016/j.na.2010.02.026 | es_ES |
dc.description.references | Samet, B., Vetro, C., & Yazidi, H. (2013). A fixed point theorem for a Meir-Keeler type contraction through rational expression. Journal of Nonlinear Sciences and Applications, 06(03), 162-169. doi:10.22436/jnsa.006.03.02 | es_ES |
dc.description.references | Schellekens, M. (1995). The Smyth Completion. Electronic Notes in Theoretical Computer Science, 1, 535-556. doi:10.1016/s1571-0661(04)00029-5 | es_ES |
dc.description.references | Romaguera, S., & Schellekens, M. (1999). Quasi-metric properties of complexity spaces. Topology and its Applications, 98(1-3), 311-322. doi:10.1016/s0166-8641(98)00102-3 | es_ES |
dc.description.references | García-Raffi, L. M., Romaguera, S., & Schellekens, M. P. (2008). Applications of the complexity space to the General Probabilistic Divide and Conquer Algorithms. Journal of Mathematical Analysis and Applications, 348(1), 346-355. doi:10.1016/j.jmaa.2008.07.026 | es_ES |
dc.description.references | Mohammadi, Z., & Valero, O. (2016). A new contribution to the fixed point theory in partial quasi-metric spaces and its applications to asymptotic complexity analysis of algorithms. Topology and its Applications, 203, 42-56. doi:10.1016/j.topol.2015.12.074 | es_ES |
dc.description.references | Romaguera, S., & Tirado, P. (2011). The complexity probabilistic quasi-metric space. Journal of Mathematical Analysis and Applications, 376(2), 732-740. doi:10.1016/j.jmaa.2010.11.056 | es_ES |
dc.description.references | Romaguera, S., & Tirado, P. (2015). A characterization of Smyth complete quasi-metric spaces via Caristi’s fixed point theorem. Fixed Point Theory and Applications, 2015(1). doi:10.1186/s13663-015-0431-1 | es_ES |
dc.description.references | Stevo, S. (2002). The recursive sequence xn+1 = g(xn, xn−1)/(A + xn). Applied Mathematics Letters, 15(3), 305-308. doi:10.1016/s0893-9659(01)00135-5 | es_ES |