- -

Re-engineering the ant colony optimization for CMP architectures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Re-engineering the ant colony optimization for CMP architectures

Mostrar el registro completo del ítem

Cecilia-Canales, JM.; García Carrasco, JM. (2020). Re-engineering the ant colony optimization for CMP architectures. The Journal of Supercomputing (Online). 76(6):4581-4602. https://doi.org/10.1007/s11227-019-02869-8

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160762

Ficheros en el ítem

Metadatos del ítem

Título: Re-engineering the ant colony optimization for CMP architectures
Autor: Cecilia-Canales, José María GARCÍA CARRASCO, JOSE MANUEL
Entidad UPV: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Fecha difusión:
Resumen:
[EN] The ant colony optimization (ACO) is inspired by the behavior of real ants, and as a bioinspired method, its underlying computation is massively parallel by definition. This paper shows re-engineering strategies to ...[+]
Palabras clave: Parallel and distributed ACO , CMP code redesign , Intel Xeon Phi , Performance evaluation , Ant colony optimization , TSP
Derechos de uso: Reserva de todos los derechos
Fuente:
The Journal of Supercomputing (Online). (eissn: 1573-0484 )
DOI: 10.1007/s11227-019-02869-8
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11227-019-02869-8
Código del Proyecto:
info:eu-repo/grantAgreement/f SéNeCa//20813%2FPI%2F18/
info:eu-repo/grantAgreement/MINECO//TIN2015-66972-C5-3-R/ES/TECNICAS PARA LA MEJORA DE LAS PRESTACIONES, FIABILIDAD Y CONSUMO DE ENERGIA DE LOS SERVIDORES. OPTIMIZACION DE APLICACIONES CIENTIFICAS, MEDICAS Y DE VISION ARTIFICIAL/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098156-B-C53/ES/TECNICAS INNOVADORAS EN COMPUTACION ESPECIALIZADA Y DE ALTAS PRESTACIONES/
info:eu-repo/grantAgreement/MINECO//TIN2016-78799-P/ES/DESARROLLO HOLISTICO DE APLICACIONES EMERGENTES EN SISTEMAS HETEROGENEOS/
info:eu-repo/grantAgreement/AEI//RTC-2017-6389-5/
Agradecimientos:
This work was partially supported by the Fundación Séneca, Agencia de Ciencia y Tecnología de la Región de Murcia under Project 20813/PI/18, and by Spanish Ministry of Science, Innovation and Universities as well as European ...[+]
Tipo: Artículo

References

Yang XS (2010) Nature-inspired metaheuristic algorithms. Luniver Press, Lebanon

Akila M, Anusha P, Sindhu M, Selvan Krishnasamy T (2017) Examination of PSO, GA-PSO and ACO algorithms for the design optimization of printed antennas. In: IEEE Applied Electromagnetics Conference (AEMC)

Dorigo M, Stützle T (2004) Ant colony optimization. A bradford book. The MIT Press, Cambridge [+]
Yang XS (2010) Nature-inspired metaheuristic algorithms. Luniver Press, Lebanon

Akila M, Anusha P, Sindhu M, Selvan Krishnasamy T (2017) Examination of PSO, GA-PSO and ACO algorithms for the design optimization of printed antennas. In: IEEE Applied Electromagnetics Conference (AEMC)

Dorigo M, Stützle T (2004) Ant colony optimization. A bradford book. The MIT Press, Cambridge

Cecilia JM, García JM, Nisbet A, Amos M, Ujaldón M (2013) Enhancing data parallelism for ant colony optimization on GPUs. J Parallel Distrib Comput 73(1):42–51

Dawson L, Stewart I (2013) Improving ant colony optimization performance on the GPU using CUDA. In: IEEE Conference on Evolutionary Computation, pp 1901–1908

Llanes A, Cecilia JM, Sánchez A, García JM, Amos M, Ujaldón M (2016) Dynamic load balancing on heterogeneous clusters for parallel ant colony optimization. Cluster Comput 19(1):1–11

Cecilia JM, Llanes A, Abellán JL, Gómez-Luna J, Chang L, Hwu WW (2018) High-throughput ant colony optimization on graphics processing units. J Parallel Distrib Comput 113:261–274

Lloyd H, Amos M (2016) A Highly Parallelized and Vectorized Implementation of Max–Min Ant System on Intel Xeon Phi. In: IEEE computational intelligence

Tirado F, Barrientos RJ, González P, Mora M (2017) Efficient exploitation of the Xeon Phi architecture for the ant colony optimization (ACO) metaheuristic. J Supercomput 73(11):5053–5070

Montesinos V, García JM (2018) Vectorization strategies for ant colony optimization on intel architectures. Parallel Computing is Everywhere. IOS Press, Amsterdam, pp 400–409

Lawler E, Lenstra J, Kan A, Shmoys D (1987) The Traveling salesman problem. Wiley, New York

Montesinos V (June 2018) Performance analysis of ant colony optimization on intel architectures. Master’s Thesis, University of Murcia (Spain)

Lloyd H, Amos M (2017) Analysis of independent roulette selection in parallel ant colony optimization. In: Genetic and Evolutionary Computation Conference, ACM, pp 19–26

Dorigo M (1992) Optimization, learning and natural algorithms. Ph.D. Thesis, Politecnico di Milano, Italy

Duran A, Klemm M (2012) The intel many integrated core architecture. In: Internal Conference on High Performance Computing and Simulation (HPCS), pp 365–366

The OpenMP API specification for parallel programming. URL: https://www.openmp.org . [Last accessed 14 June 2018]

The Message Passing Interface (MPI) standard. URL: http://www.mcs.anl.gov/research/projects/mpi/ . [Last accessed 15 June 2018]

Vladimirov A, Asai R (2016) Clustering modes in Knights landing processors: developer’s guide. Colfax international. URL: https://colfaxresearch.com/knl-numa/ . [Last accessed: 16 June 2018]

Intel Developer Zone. URL: https://software.intel.com/en-us/modern-code . [Last accessed 02 Oct 2018]

Pearce M (2018) What is code modernization? Intel developer zone. URL: http://software.intel.com/en-us/articles/what-is-code-modernization . [Last accessed 15 Feb 2018]

Stützle T ACOTSP v1.03. Last accessed 15 Feb 2018. URL: http://iridia.ulb.ac.be/~mdorigo/ACO/downloads/ACOTSP-1.03.tgz

Reinelt G (1991) TSPLIB—a traveling salesman problem library. ORSA J Comput 3:376–384

Crainic TG, Toulouse M (2003) Parallel strategies for meta-heuristics. State-of-the-art handbook in metaheuristics. Kluwer Academic Publishers, Dordrecht, pp 475–513

Delévacq A, Delisle P, Gravel M, Krajecki M (2013) Parallel ant colony optimization on graphics processing units. J Parallel Distrib Comput 73(1):52–61

Skinderowicz R (2016) The GPU-based parallel ant colony system. J Parallel Distrib Comput 98:48–60

Zhou Y, He F, Hou N, Qiu Y (2018) Parallel ant colony optimization on multi-core SIMD CPUs. Future Gener Comput Syst 79:473–487

Peake J, Amos M, Yiapanis P, Lloyd H (2018) Vectorized candidate set selection for parallel ant colony optimization. In: Genetic and Evolutionary Computation Conference, ACM, pp 1300–1306

Stützle T (1998) Parallelization strategies for ant colony optimization. In: Eiben AE, Bäck T, Schoenauer M, Schwefel HP (eds) Parallel problem solving from nature—PPSN V. PPSN. Lecture Notes in Computer Science, vol 1498. Springer, Berlin, Heidelberg

Abdelkafi O, Lepagnot J, Idoumghar L (2014) Multi-level parallelization for hybrid ACO. In: Siarry P, Idoumghar L, Lepagnot J (eds) Swarm Intelligence Based Optimization. ICSIBO 2014. Lecture Notes in Computer Science, vol 8472. Springer, Cham

Michel R, Middendorf M (1998) An island model based ant system with lookahead for the shortest super sequence problem. In: Eiben AE, Bäck T, Schoenauer M, Schwefel HP (eds) Parallel problem solving from nature— PPSN V. PPSN. Lecture Notes in Computer Science, vol 1498. Springer, Berlin, Heidelberg

Chen L, Sun H, Wang S (2008) Parallel implementation of ant colony optimization on MPP. In: International Conference on Machine Learning and Cybernetics

Lin Y, Cai H, Xiao J, Zhang J (2007) Pseudo parallel ant colony optimization for continuous functions. In: International Conference on Natural Computation

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem