- -

Improving the Sustainability of Self-Consumption with Cooperative DC Microgrids

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improving the Sustainability of Self-Consumption with Cooperative DC Microgrids

Mostrar el registro completo del ítem

Roldán-Porta, C.; Roldán-Blay, C.; Escrivá-Escrivá, G.; Quiles Cucarella, E. (2019). Improving the Sustainability of Self-Consumption with Cooperative DC Microgrids. Sustainability. 11(19):1-22. https://doi.org/10.3390/su11195472

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160768

Ficheros en el ítem

Metadatos del ítem

Título: Improving the Sustainability of Self-Consumption with Cooperative DC Microgrids
Autor: Roldán-Porta, Carlos Roldán-Blay, Carlos Escrivá-Escrivá, Guillermo Quiles Cucarella, Eduardo
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica
Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica
Fecha difusión:
Resumen:
[EN] The development of microgrids is of great interest to facilitate the integration of distributed generation in electricity networks, improving the sustainability of energy production. Microgrids in DC (DC-MG) provide ...[+]
Palabras clave: DC-microgrid , Cooperative microgrid , Renewable generation , Primary droop control
Derechos de uso: Reconocimiento (by)
Fuente:
Sustainability. (eissn: 2071-1050 )
DOI: 10.3390/su11195472
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/su11195472
Agradecimientos:
This work has been partially supported by funds for research support of the Universitat Politècnica de València
Tipo: Artículo

References

Justo, J. J., Mwasilu, F., Lee, J., & Jung, J.-W. (2013). AC-microgrids versus DC-microgrids with distributed energy resources: A review. Renewable and Sustainable Energy Reviews, 24, 387-405. doi:10.1016/j.rser.2013.03.067

Farhangi, H. (2010). The path of the smart grid. IEEE Power and Energy Magazine, 8(1), 18-28. doi:10.1109/mpe.2009.934876

Brown, R. E., & Willis, H. L. (2006). The economics of aging infrastructure. IEEE Power and Energy Magazine, 4(3), 36-43. doi:10.1109/mpae.2006.1632452 [+]
Justo, J. J., Mwasilu, F., Lee, J., & Jung, J.-W. (2013). AC-microgrids versus DC-microgrids with distributed energy resources: A review. Renewable and Sustainable Energy Reviews, 24, 387-405. doi:10.1016/j.rser.2013.03.067

Farhangi, H. (2010). The path of the smart grid. IEEE Power and Energy Magazine, 8(1), 18-28. doi:10.1109/mpe.2009.934876

Brown, R. E., & Willis, H. L. (2006). The economics of aging infrastructure. IEEE Power and Energy Magazine, 4(3), 36-43. doi:10.1109/mpae.2006.1632452

Asmus, P. (2010). Microgrids, Virtual Power Plants and Our Distributed Energy Future. The Electricity Journal, 23(10), 72-82. doi:10.1016/j.tej.2010.11.001

Barreto, R. A. (2018). Fossil fuels, alternative energy and economic growth. Economic Modelling, 75, 196-220. doi:10.1016/j.econmod.2018.06.019

Zhang, G., Li, Z., Zhang, B., & Halang, W. A. (2018). Power electronics converters: Past, present and future. Renewable and Sustainable Energy Reviews, 81, 2028-2044. doi:10.1016/j.rser.2017.05.290

Lasseter, R. H. (s. f.). MicroGrids. 2002 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.02CH37309). doi:10.1109/pesw.2002.985003

Santacana, E., Rackliffe, G., Tang, L., & Feng, X. (2010). Getting Smart. IEEE Power and Energy Magazine, 8(2), 41-48. doi:10.1109/mpe.2009.935557

Hatziargyriou, N., Asano, H., Iravani, R., & Marnay, C. (2007). Microgrids. IEEE Power and Energy Magazine, 5(4), 78-94. doi:10.1109/mpae.2007.376583

Papadimitriou, C. N., Zountouridou, E. I., & Hatziargyriou, N. D. (2015). Review of hierarchical control in DC microgrids. Electric Power Systems Research, 122, 159-167. doi:10.1016/j.epsr.2015.01.006

Paska, J., Biczel, P., & Kłos, M. (2009). Hybrid power systems – An effective way of utilising primary energy sources. Renewable Energy, 34(11), 2414-2421. doi:10.1016/j.renene.2009.02.018

Salomonsson, D., & Sannino, A. (2007). Low-Voltage DC Distribution System for Commercial Power Systems With Sensitive Electronic Loads. IEEE Transactions on Power Delivery, 22(3), 1620-1627. doi:10.1109/tpwrd.2006.883024

Brenna, M., Foiadelli, F., Longo, M., & Abegaz, T. (2016). Integration and Optimization of Renewables and Storages for Rural Electrification. Sustainability, 8(10), 982. doi:10.3390/su8100982

Khalid, M., Ahmadi, A., Savkin, A. V., & Agelidis, V. G. (2016). Minimizing the energy cost for microgrids integrated with renewable energy resources and conventional generation using controlled battery energy storage. Renewable Energy, 97, 646-655. doi:10.1016/j.renene.2016.05.042

Mahdavyfakhr, M., Rashidirad, N., Hamzeh, M., Sheshyekani, K., & Afjei, E. (2017). Stability improvement of DC grids involving a large number of parallel solar power optimizers: An active damping approach. Applied Energy, 203, 364-372. doi:10.1016/j.apenergy.2017.06.044

Lazzari, R., Piegari, L., Grillo, S., Carminati, M., Ragaini, E., Bossi, C., & Tironi, E. (2018). Selectivity and security of DC microgrid under line-to-ground fault. Electric Power Systems Research, 165, 238-249. doi:10.1016/j.epsr.2018.09.001

Salomonsson, D., Soder, L., & Sannino, A. (2009). Protection of Low-Voltage DC Microgrids. IEEE Transactions on Power Delivery, 24(3), 1045-1053. doi:10.1109/tpwrd.2009.2016622

Shuai, Z., Fang, J., Ning, F., & Shen, Z. J. (2018). Hierarchical structure and bus voltage control of DC microgrid. Renewable and Sustainable Energy Reviews, 82, 3670-3682. doi:10.1016/j.rser.2017.10.096

Van den Broeck, G., Stuyts, J., & Driesen, J. (2018). A critical review of power quality standards and definitions applied to DC microgrids. Applied Energy, 229, 281-288. doi:10.1016/j.apenergy.2018.07.058

Anand, S., Fernandes, B. G., & Guerrero, J. (2013). Distributed Control to Ensure Proportional Load Sharing and Improve Voltage Regulation in Low-Voltage DC Microgrids. IEEE Transactions on Power Electronics, 28(4), 1900-1913. doi:10.1109/tpel.2012.2215055

Radwan, A. A. A., & Mohamed, Y. A.-R. I. (2012). Linear Active Stabilization of Converter-Dominated DC Microgrids. IEEE Transactions on Smart Grid, 3(1), 203-216. doi:10.1109/tsg.2011.2162430

Che, Y., Zhou, J., Lin, T., Li, W., & Xu, J. (2018). A Simplified Control Method for Tie-Line Power of DC Micro-Grid. Energies, 11(4), 933. doi:10.3390/en11040933

Huang, Y., Yang, L., Liu, S., & Wang, G. (2018). Cooperation between Two Micro-Grids Considering Power Exchange: An Optimal Sizing Approach Based on Collaborative Operation. Sustainability, 10(11), 4198. doi:10.3390/su10114198

González, A., Riba, J.-R., & Rius, A. (2015). Optimal Sizing of a Hybrid Grid-Connected Photovoltaic–Wind–Biomass Power System. Sustainability, 7(9), 12787-12806. doi:10.3390/su70912787

Maleki, A., Rosen, M., & Pourfayaz, F. (2017). Optimal Operation of a Grid-Connected Hybrid Renewable Energy System for Residential Applications. Sustainability, 9(8), 1314. doi:10.3390/su9081314

Roldán-Blay, C., Escrivá-Escrivá, G., & Roldán-Porta, C. (2019). Improving the benefits of demand response participation in facilities with distributed energy resources. Energy, 169, 710-718. doi:10.1016/j.energy.2018.12.102

Mao, M., Jin, P., Chang, L., & Xu, H. (2014). Economic Analysis and Optimal Design on Microgrids With SS-PVs for Industries. IEEE Transactions on Sustainable Energy, 5(4), 1328-1336. doi:10.1109/tste.2014.2327067

Elrayyah, A., Cingoz, F., & Sozer, Y. (2015). Construction of Nonlinear Droop Relations to Optimize Islanded Microgrid Operation. IEEE Transactions on Industry Applications, 51(4), 3404-3413. doi:10.1109/tia.2014.2387484

Meng, L., Shafiee, Q., Ferrari Trecate, G., Karimi, H., Fulwani, D., Lu, X., & Guerrero, J. M. (2017). Review on Control of DC Microgrids. IEEE Journal of Emerging and Selected Topics in Power Electronics, 1-1. doi:10.1109/jestpe.2017.2690219

Huang, H.-H., Hsieh, C.-Y., Liao, J.-Y., & Chen, K.-H. (2011). Adaptive Droop Resistance Technique for Adaptive Voltage Positioning in Boost DC–DC Converters. IEEE Transactions on Power Electronics, 26(7), 1920-1932. doi:10.1109/tpel.2010.2095508

Nasirian, V., Moayedi, S., Davoudi, A., & Lewis, F. L. (2015). Distributed Cooperative Control of DC Microgrids. IEEE Transactions on Power Electronics, 30(4), 2288-2303. doi:10.1109/tpel.2014.2324579

Wang, P., Lu, X., Yang, X., Wang, W., & Xu, D. (2016). An Improved Distributed Secondary Control Method for DC Microgrids With Enhanced Dynamic Current Sharing Performance. IEEE Transactions on Power Electronics, 31(9), 6658-6673. doi:10.1109/tpel.2015.2499310

Ma, J., Yuan, L., Zhao, Z., & He, F. (2017). Transmission Loss Optimization-Based Optimal Power Flow Strategy by Hierarchical Control for DC Microgrids. IEEE Transactions on Power Electronics, 32(3), 1952-1963. doi:10.1109/tpel.2016.2561301

Ren, L., Qin, Y., Li, Y., Zhang, P., Wang, B., Luh, P. B., … Gong, T. (2018). Enabling resilient distributed power sharing in networked microgrids through software defined networking. Applied Energy, 210, 1251-1265. doi:10.1016/j.apenergy.2017.06.006

Liang Che, & Shahidehpour, M. (2014). DC Microgrids: Economic Operation and Enhancement of Resilience by Hierarchical Control. IEEE Transactions on Smart Grid, 5(5), 2517-2526. doi:10.1109/tsg.2014.2344024

Lasseter, R. H. (2011). Smart Distribution: Coupled Microgrids. Proceedings of the IEEE, 99(6), 1074-1082. doi:10.1109/jproc.2011.2114630

Wang, H., & Huang, J. (2018). Incentivizing Energy Trading for Interconnected Microgrids. IEEE Transactions on Smart Grid, 9(4), 2647-2657. doi:10.1109/tsg.2016.2614988

Wang, H., & Huang, J. (2016). Cooperative Planning of Renewable Generations for Interconnected Microgrids. IEEE Transactions on Smart Grid, 7(5), 2486-2496. doi:10.1109/tsg.2016.2552642

Kasaei, M. J., Gandomkar, M., & Nikoukar, J. (2017). Optimal management of renewable energy sources by virtual power plant. Renewable Energy, 114, 1180-1188. doi:10.1016/j.renene.2017.08.010

Gao, Y., Cheng, H., Zhu, J., Liang, H., & Li, P. (2016). The Optimal Dispatch of a Power System Containing Virtual Power Plants under Fog and Haze Weather. Sustainability, 8(1), 71. doi:10.3390/su8010071

Khan, Z. A., & Jayaweera, D. (2017). Approach for smart meter load profiling in Monte Carlo simulation applications. IET Generation, Transmission & Distribution, 11(7), 1856-1864. doi:10.1049/iet-gtd.2016.2084

Photovoltaic Geographical Information Systemhttp://re.jrc.ec.europa.eu/pvg_tools/en/tools.html

Wang, J.-Y., Qian, Z., Zareipour, H., & Wood, D. (2018). Performance assessment of photovoltaic modules based on daily energy generation estimation. Energy, 165, 1160-1172. doi:10.1016/j.energy.2018.10.047

International Electrotechnical Commission, IEC 60364, Electrical Installations of Buildings—Part 5: Selection and Erection of Electrical Equipmenthttps://webstore.iec.ch/publication/1878

Chang, Y.-C., Chang, H.-C., & Huang, C.-Y. (2018). Design and Implementation of the Battery Energy Storage System in DC Micro-Grid Systems. Energies, 11(6), 1566. doi:10.3390/en11061566

Deilami, S., Masoum, A. S., Moses, P. S., & Masoum, M. A. S. (2011). Real-Time Coordination of Plug-In Electric Vehicle Charging in Smart Grids to Minimize Power Losses and Improve Voltage Profile. IEEE Transactions on Smart Grid, 2(3), 456-467. doi:10.1109/tsg.2011.2159816

Olivares, D. E., Mehrizi-Sani, A., Etemadi, A. H., Canizares, C. A., Iravani, R., Kazerani, M., … Hatziargyriou, N. D. (2014). Trends in Microgrid Control. IEEE Transactions on Smart Grid, 5(4), 1905-1919. doi:10.1109/tsg.2013.2295514

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem